Abstract:
An ion exchanger includes a sheet-shaped positive ion exchanger 2 in which binder particles 5 and positive ionic exchange resin particles 4 are mixed with each other, and a sheet-shaped porous negative ion exchanger 3 in which binder particles 7 and negative ionic exchange resin particles 6 are mixed with each other, the positive ion exchanger 2 and the negative ion exchanger 3 are bonded to each other to form an interface, and capacity of the negative ion exchanger 3 is greater than that of the positive ion exchanger 2. Therefore, the porous ion exchanger 1 is formed and absorbing ability of ion is increased, capacity of the negative ion exchanger 3 is made greater than that of the positive ion exchanger 2, regenerating ability of the ion exchanger with respect to absorbing ability of ion can be secured, and ion absorption and regeneration processing is carried out efficiently.
Abstract:
An ion exchanger includes a sheet-shaped positive ion exchanger 2 in which binder particles 5 and positive ionic exchange resin particles 4 are mixed with each other, and a sheet-shaped porous negative ion exchanger 3 in which binder particles 7 and negative ionic exchange resin particles 6 are mixed with each other, the positive ion exchanger 2 and the negative ion exchanger 3 are bonded to each other to form an interface, and capacity of the negative ion exchanger 3 is greater than that of the positive ion exchanger 2. Therefore, the porous ion exchanger 1 is formed and absorbing ability of ion is increased, capacity of the negative ion exchanger 3 is made greater than that of the positive ion exchanger 2, regenerating ability of the ion exchanger with respect to absorbing ability of ion can be secured, and ion absorption and regeneration processing is carried out efficiently.
Abstract:
A method for desalination of water or of aqueous solutions derived from industrial process that use two columns: the first treatment column containing a mixed bed of ion exchange resins, in which the cation exchange resins are regenerated, and a second column, into which the anion exchange resins are transferred and regenerated, to be then reintroduced from the bottom into the above mentioned first column, where they rise through the cation exchange resins.
Abstract:
Equipment and procedures for regenerating ion exchange resin mixed beds, used for the desalination of water or of aqueous solutions from industrial processes (process solutions), that use two columns: the first treatment column (C1), containing a mixed bed of ion exchange resins, in which the cation exchange resins are regenerated, and a second column (C2) into which the anion exchange resins are transferred and regenerated, to be then reintroduced from the bottom into the above mentioned first column (C1), where they rise through the cation exchange resins and intimately mix with the anionic exchange resins.