摘要:
A torque transmitting tool is machined by registering the torque transmitting tool using a shoulder between the shank and the out-of-round drive portion of the tool as a reference. First and second seating surfaces are milled on first and second opposed surfaces of the tool, and then first and second bores are drilled into the drive stud, starting from the first and second seating surfaces, respectively. The first and second bores intersect within the drive stud to form a stepped diagonal bore in the tool. Alternately, all machining operations are performed from one side of the tool.
摘要:
A torque transmitting tool is machined by registering the torque transmitting tool using a shoulder between the shank and the out-of-round drive portion of the tool as a reference. First and second seating surfaces are milled on first and second opposed surfaces of the tool, and then first and second bores are drilled into the drive stud, starting from the first and second seating surfaces, respectively. The first and second bores intersect within the drive stud to form a stepped diagonal bore in the tool. Alternately, all machining operations are performed from one side of the tool.
摘要:
A magnetically levitated high-speed spindle assembly (20) is provided for forming non-circular holes (22) in workpieces (24) or non-circular surfaces on pins. The non-circular holes (22) can be formed with dimensionally varying axial trajectories at high speeds and with great accuracy. This is accomplished by supporting a rotating spindle (26) between first (58) and second (60) magnetic bearing clusters and independently controlling these bearing clusters (58, 60) to move a shaping tool (32) at the end of the spindle (26) in a predetermined orbital path (B). A multiple input-multiple output control strategy is used to control spindle (26) movements in the X and Y axes. The tilt angle between the cutting edge (34) of the shaping tool (32) and the orbital path (B) is maintained perpendicular under this multiple input-multiple output control of the magnetic bearing clusters (58, 60) to further improve shaping precision and spindle (26) stability during high-speed operations.
摘要:
The present application discloses a four-directional drilling machine, comprising a main frame, a main machine platform, flange-type hydraulic cylinders, linear bearings, hydraulic piston rods, guide rods, nuts A, an upper pressure plate, drill bushings A, nuts B, monoblock drilling machines A, an upper supporting plate, positioning stop blocks, adjustable base assemblies, a left supporting plate, a drill bushing B, a right supporting plate and the like.
摘要:
A perforated composite panel comprises a substrate and an applied layer, the substrate having a first surface and an opposite second surface. A method of forming the perforated composite panel comprises the steps of: i. cutting a plurality of first holes in the substrate; ii. positioning the applied layer against the substrate such that a surface of the applied layer overlays the first surface of the substrate to thereby form the composite panel; iii. locating the composite panel in a fixture, the fixture having one or more datum features; iv. determining the location and axis direction for each of the first holes in the substrate, relative to the or each datum feature; and v. cutting a plurality of second holes in the applied layer, each of the plurality of second holes being coincident and coaxial with a corresponding one of the plurality of first holes.
摘要:
In a drilling tool including: a shank located at a tip side of a tool main body; and a bit located at a tip side of the shank, the shank and the bit (connection body) are connected to each other via screws, and a guide part for center alignment for aligning the centers of the shank and the bit is formed in the vicinity of screw portions of the shank and the bit.
摘要:
A torque transmitting tool is machined by registering the torque transmitting tool using a shoulder between the shank and the out-of-round drive portion of the tool as a reference. First and second seating surfaces are milled on first and second opposed surfaces of the tool, and then first and second bores are drilled into the drive stud, starting from the first and second seating surfaces, respectively. The first and second bores intersect within the drive stud to form a stepped diagonal bore in the tool. Alternately, all machining operations are performed from one side of the tool.
摘要:
A magnetically levitated high-speed spindle assembly (20) is provided for forming non-circular holes (22) in workpieces (24) or non-circular surfaces on pins. The non-circular holes (22) can be formed with dimensionally varying axial trajectories at high speeds and with great accuracy. This is accomplished by supporting a rotating spindle (26) between first (58) and second (60) magnetic bearing clusters and independently controlling these bearing clusters (58, 60) to move a shaping tool (32) at the end of the spindle (26) in a predetermined orbital path (B). A multiple input-multiple output control strategy is used to control spindle (26) movements in the X and Y axes. The tilt angle between the cutting edge (34) of the shaping tool (32) and the orbital path (B) is maintained perpendicular under this multiple input-multiple output control of the magnetic bearing clusters (58, 60) to further improve shaping precision and spindle (26) stability during high-speed operations.
摘要:
The pocket drilling fixture has a clamp base with a clamp face thereon. Opposing it is a clamp body with an opposing clamp face. Clamp structure, including a clamp arm on the base urges the faces together to clamp over a workpiece therebetween in a clamping direction. A guide carrier is mounted on the base to move in the direction at a right angle to the clamping direction. The base has a turret thereon with stops which can be positioned beneath the guide carrier to set its height above the base so that height can be preselected, depending on the workpiece thickness.
摘要:
Various embodiments of power tool and method of operating same are described. The power tool may include a first position sensor, a second position sensor, a third position sensor, and a controller. The first, second, and third position sensors may each generate a signal indicative of a distance between the respective position sensor and a workpiece. The controller may determine one or more angles of the power tool with respect to the workpiece based on the first, second, and third signal and present an indication as to whether the one or more angles are within a predetermined range. The controller may further obtain a depth measurement based on the first signal, the second signal, and the third signal and generate, based on the obtained depth measurement, one or more control signals that control operation of the power tool.