Abstract:
A method for forming a silicon ingot includes the following steps: providing a silicon ingot of variable electrical resistivity and containing interstitial oxygen, determining the interstitial oxygen concentration in different areas of the silicon ingot, calculating the concentration of thermal donors to be created in the different areas to reach a target value of the electrical resistivity, and subjecting the different areas of the silicon ingot to annealing so as to form the thermal donors. The annealing temperature in each area is determined from the thermal donor and interstitial oxygen concentrations of the area and from a predefined annealing time.
Abstract:
The present invention relates to a method for manufacturing chemically strengthened glass and, more specifically, to a method for manufacturing chemically strengthened glass that can enhance the strength of glass. To this end, the present invention provides a method of manufacturing chemically strengthened glass comprising: a primary chemical strengthening step for chemically strengthening a mother glass; a cutting step for cutting the chemically strengthened mother glass into a predetermined size; a paste applying step for applying paste to a cutting plane formed by the cutting step; and a secondary chemical strengthening step for chemically strengthening only the cutting plane by heating the paste, wherein the paste includes alkaline ions having a larger ionic radius than those included in the mother glass.
Abstract:
The present invention relates to a tempered glass sheet for a touch panel, and to a method for manufacturing the tempered glass sheet for a touch panel. The method for manufacturing the tempered glass sheet for a touch panel consisting of tempered glass includes: a first step in which mother glass, including cell glass for a plurality of touch panels, is tempered; a second step in which a process for forming a substrate is performed, which includes forming a transparent electrode by the mother glass unit; and a third step in which, after the substrate-forming process and a half-etching process are completed, the mother glass is cut for the mother glass unit and the cut surface is ground after cutting.
Abstract:
Core samples may be easily, quickly, and safely split using a fluid cutter, such as a water jet. Cutting may take place upon exit of the sample from the drill tube, or core samples may be placed in core carriers for cutting. Core samples may also be stored and transported in the core carriers. Assessment of core samples is facilitated by scanning the core samples, with the results stored to produce a virtual core sample. Virtual core samples may be displayed on a computing device, including a core sample display device which simulates the appearance of a section of an actual core.
Abstract:
A method for manufacturing a decorative stone comprises steps of: cutting a stone or other decorative materials into certain positive pieces having various shape by the ultrasonic cutting technology; cutting another stone to certain depth but not through according to the shape of said positive piece to make a negative piece by the ultrasonic cutting technology; taking out cut-off pieces from said stone; inlaying said positive pieces into said negative piece to form as an integrated piece; and polishing a surface of said positive pieces and said negative piece. In accordance with the present invention, the ultrasonic technology can bring high manufacture efficiency and the inlay can be industrialized easily. It also increases the decorative effect through inlaying different pattern and specificity stones.
Abstract:
A method and device for manufacturing a bevelled stone, particularly for a timepiece are disclosed. A precursor is produced from a mixture of at least one material in powder form with a binder. The method includes pressing the precursor so as to form a green body, using a top die and a bottom die comprising a protruding rib, sintering the green body so as to form a body of the future stone in at least one material, the body including a peripheral face and a bottom face provided with a groove, and machining the body including a substep of planning the peripheral face up to the groove, such that an inner wall of the groove forms at least a flared part of the peripheral face of the stone.
Abstract:
A glass plate production method includes (1) preparing a glass material having a first main surface and a second main surface opposite to each other; (2) irradiating the first main surface of the glass material with a laser to form an in-plane void region having a plurality of voids arranged on the first main surface, and forming a plurality of internal void rows each having one void or two or more voids arranged from the in-plane void region toward the second main surface of the glass material; and (3) chemically strengthening the glass material having the internal void rows formed therein.
Abstract:
The invention provides a block splitter device comprising first lower and second upper opposed block splitter assemblies. The block splitter assemblies have first and second forming edges that extend at least the majority of the distance from a first end to a second end of the block splitter assembly and have first ends disposed near a median split plane and second ends disposed further away from the median split plane than the first ends. Methods of using the block splitter device are described.
Abstract:
An apparatus for cutting slab material comprising a working table to support the slabs to be cut during working; a working unit comprising disk cutting means and water-jet cutting means; and a unit for moving the working unit above the working table. The movement unit comprises a horizontal translation unit to move the working unit along two directions parallel to the working table and perpendicular to each other; a vertical translation unit to move the working unit along a direction perpendicular to the working table; a first rotation unit to rotate the working unit about a first axis, vertical and substantially perpendicular to the working table; and a second rotation unit to rotate the working unit about a second axis, inclined with respect to the first axis. Said disk cutting means and water-jet cutting means are integral and therefore the second rotation unit rotates simultaneously with the said cutting means.
Abstract:
A laser machining process is described for laser machining glass or glass-like materials. This process machines articles or features in articles with chamfered edges in one manufacturing operation. Chamfered edges are desirable in glass and glass-like materials because they resist fracturing or chipping and eliminate sharp edges. Producing articles or features in articles in one manufacturing operation is desirable because it can save time and expense by eliminating the need to transfer the article to a separate machine for chamfering after laser machining. Alternatively, it can permit use of less expensive equipment because the same laser used for machining can be used to form the chamfer instead of having a separate process perform the chamfering. Producing chamfers with laser machining results in high quality chamfers without the need for a separate polishing or finishing step.