Abstract:
An autonomous robotic vehicle includes a chassis, wheels movably mounted to the chassis by a suspension system, and a vehicle pose system. The vehicle pose system includes a ride height sensor system, a processor, and memory. The sensor system is configured to measure wheel displacement of the wheels relative to the chassis. The sensor system includes ride height sensors that determine wheel positions of the wheels with respect to the chassis as the vehicle travels along a surface. The memory has instructions stored thereon which, when executed by the processor cause the vehicle pose system to determine a plane of the surface corresponding to the wheel positions so that the pose system can determine a pose of the vehicle based on an angle of the surface with respect to the vehicle.
Abstract:
A method for monitoring and/or controlling the behavior of a vehicle including at least one wheel includes determining one or more values of deformation of a tire of the at least one wheel by measuring the one or more values using a first signal emitted between a rim of the at least one wheel and a casing of the tire, providing a database comprising predetermined values of deformation of the tire that correspond to a behavior of the at least one wheel, comparing the measured one or more values of deformation with one or more of the predetermined values of deformation, and emitting a second signal dependent on at least one result of the comparison for monitoring and/or controlling the behavior of the vehicle. The one or more values of deformation are determined in vertical, transverse, and longitudinal directions or along the axes of a three-dimensional Cartesian coordinate system.
Abstract:
A walking-assistant device is provided comprising a driving unit that includes four wheels and four actuators for adjusting heights of the four wheels, a mechanism unit that includes two vertical frames whose length is adjusted and connection frames for fixing and connecting the vertical frames, and a manipulation unit that includes a plurality of sensors for grasping a user's moving intention and controls the driving unit and the mechanism unit based on a signal detected by the sensors.
Abstract:
A system for detecting a physical amount of behavior of a vehicle includes, acceleration sensors arranged on at least two longitudinal axes of the vehicle, the vertical axis Of the vehicle and the lateral axis of the vehicle, a plurality of the acceleration sensors being disposed on each of the axes. A unit is provided for establishing a conversion equation for determining acceleration values of linear motion at an arbitrary point of the vehicle in the direction of each axis of an arbitrary coordinate system and acceleration values of rotational motion with respect to the each axis of the coordinate system while simultaneously using acceleration values detected by the acceleration sensors disposed on at least two of the vehicular longitudinal axes, the vertical axis and the lateral axis. There is also provided a unit for calculating the conversion equation to obtain the acceleration values of linear motion at an arbitrary point of the vehicle in the direction of each axis of the arbitrary coordinate system and acceleration values of rotational motion with respect to each axis of the coordinate system, a unit for establishing a motion equation expressing a plurality of freedom motions, and a unit for calculating the motion equation with the acceleration values of linear motion at an arbitrary point of the vehicle in the direction of each axis of the arbitrary axis of the arbitrary coordinate system and acceleration values of rotational motion with respect to the each axis of the coordinate system to obtain the physical amount associated with the behavior of the vehicle.
Abstract:
A walking-assistant device is provided comprising a driving unit that includes four wheels and four actuators for adjusting heights of the four wheels, a mechanism unit that includes two vertical frames whose length is adjusted and connection frames for fixing and connecting the vertical frames, and a manipulation unit that includes a plurality of sensors for grasping a user's moving intention and controls the driving unit and the mechanism unit based on a signal detected by the sensors.
Abstract:
A suspension system for controlling the relative position of a vehicle and a wheel assembly supporting the vehicle for travel over a surface of terrain. The system includes a member for resiliently connecting the vehicle and the wheel assembly to establish an equilibrium position therebetween in which the vehicle is supported in a predetermined position with respect to the surface of the terrain. The system further includes a dynamoelectric machine comprising a stationary assembly and a rotatable assembly magnetically coupled thereto, the stationary assembly having a plurality of winding stages adapted to be electrically energized to apply an electromagnetic field to said rotatable assembly thereby to rotatably drive the rotatable assembly about an axis. A ball screw translates rotation of the rotatable assembly driven by the stationary assembly into linear motion between the wheel assembly and the vehicle. A control energizes the winding stages in response to deviations of the vehicle from its predetermined position whereby the vehicle is substantially maintained at its predetermined position as the vehicle travels over the surface of the terrain.
Abstract:
A Kinetic Energy Recovery System to recharge the traction storage device of an electric vehicle through inertial differentials between a static mass and the lateral motions of a vehicle in motion. A modular machine made of an eccentric mass, which tends to remain motionless, against which the vehicle moves, forming the kinetic energy to turn that eccentric wheel, which in turn drives a series of ratios of shafts to generate electricity. Further, this generated electricity is rectified and regulated to the correct voltage to recharge the storage device on board that electric vehicle.
Abstract:
The invention relates to a method, a system and a pneumatic wheel for measuring the deformations of the casing of a tyre in operation, for the purpose of taking appropriate corrective action on the vehicle driving and/or control system by comparing the said measured deformations with predetermined values of the deformations. More specifically, the method implements the steps of: measuring the extent of the characteristic deformations of the casing profile of at least one tyre fitted on the vehicle, at a given inflation pressure, comparing the values of these characteristic deformations with stored values representing the behaviour of the tyre in the measured state of deformation, generating a signal for acting on at least one device regulating at least one mechanism for controlling the attitude of the said vehicle in motion, corresponding to the action which has to be taken on the said mechanism to keep the said behaviour of the vehicle within the limits of a predetermined behaviour or to bring it back within these limits.