摘要:
The invention relates to a method for compensating for vertically oriented movements of a superstructure of a vehicle. The vehicle is provided with the superstructure and with an active undercarriage having a plurality of wheel which are in contact with the carriageway, wherein each wheel is connected via an actuator adjustable over its length at a wheel assigned to a suspension point with the superstructure. Vertically oriented movements of the superstructure are caused by an inclination of the carriageway and by unevennesses of the carriageway, a first change of the length of at least one actuator is carried out for frequencies in a first, lower frequency range, and a second change of the length of the at least one actuator is carried out for frequencies in a second, higher frequency range.
摘要:
The vibration of a tire 10 of a running vehicle in the circumferential direction or the width direction is detected by a road surface condition estimating tire 10, provided with an acceleration sensor 11 and a signal processing unit 12. Data of a detected vibration waveform are divided into data of three domains, namely, a pre-leading domain, a contact patch domain, and a post-trailing domain, and then the vibration levels in the pre-leading domain and the contact patch domain, respectively, are extracted. At the same time, a vibration component in a low-frequency band and a vibration component in a high-frequency band are extracted respectively from the vibration levels in the respective domains, and respective vibration level ratios R, which are each a ratio thereof, are calculated. Then, on the vehicle body side, the condition of a road surface on which the vehicle is running is estimated, based on the calculated vibration level ratio R and a map 32M, stored in a storage means 32, showing a relationship between the vibration level ratio R of tire vibration and road surface conditions. Thus a road surface condition can be estimated with accuracy even when there are changes in temperature or vehicle speed.
摘要:
The present invention refers to a method for estimating the suspension stroke of a vehicle comprising the steps consisting of: a) determining a variability law (10) that associates the stroke of the suspension with the pressure inside a shock absorber of the same, based on experimental data; b) estimating the suspension stroke value related to a measured pressure value, based on the variability law (10) identified in step (a); c) detecting/obtaining the longitudinal vehicle dynamics; d) recalibrating (30) the variability law (10) identified in step a), based on the longitudinal vehicle dynamics detected/obtained in step c). The present invention also refers to an apparatus for implementing the estimation method of the suspension stroke of a vehicle according to the invention.
摘要:
In order to enhance the accuracy of estimation of a vehicle's sideslip angle, a sideslip angle estimation apparatus calculates an angle between the direction of centrifugal force acting on the vehicle body during cornering and the lateral direction of the vehicle body based on accelerations exerted on the vehicle body and acting in two different directions. A sideslip angle between the longitudinal direction of the vehicle body and the direction of travel of the vehicle is calculated based on the estimated angle.
摘要:
A method for determining the roll angle for occupant protection devices and a corresponding device are described. A transverse acceleration and a vertical acceleration of the vehicle are detected, and the roll angle of the vehicle is estimated based on the detected transverse acceleration and the detected vertical acceleration.
摘要:
A method and apparatus of determining a straight-driving state or a turning state of a moving object using an acceleration sensor are provided. The method of determining a turning state using a sensor includes: reading sensor output signals of different axes from an acceleration sensor while a moving object is being driven wherein the acceleration sensor is an at least two axes acceleration sensor and detects an acceleration of the moving object; and comparing the read sensor output signals of the different axes and determining whether the moving object is in a straight-driving state or in a turning state.
摘要:
A vehicle suspension spring system for a vehicle wheel station includes a hydraulic cylinder or strut having a piston which divides the cylinder volume into a main oil volume and an annular oil volume. The main oil volume communicates via a first oil passage with a first accumulator having a main gas volume. The annular oil volume communicates via a second oil passage with a second accumulator having an auxiliary gas volume. The oil in each accumulator is separated from the gas by a separator piston or diaphragm. A third oil passage with an isolating valve interconnects said first and second oil passages. Operation of the isolating valve is regulated by a controller. At least one sensor for sensing a parameter associated with vehicle attitude is connected to the controller. The controller is operable for switching the isolating valve between open and closed positions for altering spring stiffness of the strut in response to said sensed vehicle attitude parameter when the vehicle is in motion.
摘要:
A road surface μ is updated with time on the basis of a present value (an estimation value E) of the road surface μ estimated to estimate the road surface μ. In this case, if there is acquired road-surface information in a vehicle travel direction that is detected by a road-side infrastructure, a specifying unit 11 specifies a road-surface friction coefficient based on the road-surface information. An estimating unit 12 sets the road surface μ (μinf) thus specified as an initial value, resets the present value of the road surface μ to the initial value, and then starts estimation of the road-surface friction coefficient based on this initial value. Accordingly, estimation precision of a road-surface friction coefficient is enhanced by using an initial value having high reliability in autonomous estimation of the road-surface friction coefficient.
摘要:
The absolute roll angle of a vehicle body is estimated by blending two preliminary roll angle estimates based on their frequency so that the blended estimate continuously favors the more accurate of the preliminary roll angle estimates. A first preliminary roll angle estimate based on the measured roll rate is improved by initially compensating the roll rate signal for bias error using roll rate estimates inferred from other measured parameters. And a second preliminary roll angle estimate is determined based on the kinematic relationship among roll angle, lateral acceleration, yaw rate and vehicle speed. The blended estimate of roll angle utilizes a blending coefficient that varies with the frequency of the preliminary roll angle signals, and a blending factor used in the blending coefficient is set to different values depending whether the vehicle is in a steady-state or transient condition.
摘要:
A suspension control device includes a wheel grip state estimation device for estimating grip state of vehicle wheels based on variations of aligning torque of wheels to be steered, a vehicle rolling control device for controlling vehicle rolling, and a control parameter setting device for setting a control parameter of the vehicle rolling control device based on at least estimated grip state of the wheel grip state estimation device.