Abstract:
A process and apparatus for producing and burning synthesis gas. Carbonaceous waste material is pyrolytically decomposed in a primary reactor in the presence of steam to produce raw product gas containing H2 and CO. The raw product gas and CO2 is then introduced into a coke containing secondary reactor under pyrolyzing conditions, so that the CO2 and coke react to produce combustible gas having an increased CO content. The combustible gas is mixed with oxygen and CO2 to produce a combustible mixture which is burned as a fuel to produce heat, CO2 and H2O. A portion of the produced CO2 is recovered and used as the source of CO2 gas in the combustible mixture and as a source of CO2 gas for the secondary reactor. Preferably filters and scrubbers are used in a closed loop system to avoid undesirable emissions into the environment.
Abstract:
Carbonaceous material is gasified in a first pyrolysis zone substantially in an absence of free oxygen by heating with a solid heating media. The carbonaceous material is conducted through the first pyrolysis zone in turbulent flow to provide for the rapid transfer of heat to effect the gasification.Gaseous products are recovered while char products are introduced into a second pyrolysis zone for additional gasification. The second pyrolysis zone is maintained substantially free of free oxygen. Gasification in the second pyrolysis zone is effected by the transfer of heat from a heating media to the char products produced in the first pyrolysis zone.Gaseous products from the second pyrolysis zone are recovered.The char products from the second pyrolysis zone can be heated to a temperature sufficient for use as a solid heating media.The gaseous product from the first pyrolysis zone, after separation from the char product, can be cooled to a lower temperature to condense a liquid product therefrom.Liquid products produced can be recycled to the pyrolysis zones to produce additional gaseous products. The gaseous product from the second pyrolysis zone can be used as a conveying gas for the carbonaceous feed, char products, and recycle char.A portion of the char product and the gaseous product can be converted to methane for the production of pipeline gas.
Abstract:
A conical reaction region in a pyrolysis device has an adjustable height, adjustable speed agitator in the vicinity of the grate and a second agitator stirring the incoming material. A feed auger stops short of the reaction chamber to produce a sealing region in which the incoming feed material effectively produces a gas tight seal preventing the exit of reaction products. A gas outlet flow rate sensor controls the air inflow rate and/or lower agitator speed. Temperature and other sensors may be used to further optimize the process.
Abstract:
A heavy carbonaceous material having a Conradson carbon residue of at least 5 wt. % is coked in the presence of an alkali metal compound to produce an active surface carbon containing the alkali metal compound. The coke is then partially gasified to produce a hydrogen-containing gas and the remaining coke is recycled to the coking zone as seed coke therein.
Abstract:
This invention relates to improving the known process for disposing of refuse while simultaneously producing a useful gaseous product and an inert solid residue in a shaft furnace in which refuse is fed into the top portion of said furnace, an oxygen containing gas is fed into the base, and in which the organic portion of the refuse is pyrolized to char, oils and gas containing a high concentration of CO and H.sub.2, and the inorganic portion of the refuse is fluidized and tapped from the base of the furnace.The improvement in the above-described process comprises removing a portion of the char from the furnace while retaining a sufficient amount of combustible materials in the furnace to satisfy the energy requirements of the process. The improvement permits a reduction in the oxygen requirements of the process and has a beneficial effect on the specific heating value of the fuel gas produced.
Abstract:
1. A PROCESS FOR RECOVERING VAPORIZABLE ORGANIC COMPOUNDS FROM SOLID WASTE CONTAINING ORGANIC MATERIALS WHICH COMPRISES THE FOLLOWING STEPS:
PASSING A GASEOUS STREAM THROUGH A MICROWAVE DISCHARGE ZONE; TJE PRESSURE OF THE GASEOUS STREAM IN SAID ZONE BEING FROM ABOUT 0.1 MM. OF MERCURY TO BELOW ABOUT ATMOSPHERIC PRESSURE; THE TEMPERATURE OF SAID ZONE BEING BETWEEN ABOUT AMBIENT TEMPERATURE AND LESS THAN ABOUT 200*C., PASSING COMMINUTED SOLID WASTE CONTAINING ORGANIC MATERIALS THROHG SAID ZONE; AND SUBJECTING THE GASEOUS STREAM AND THE COMMINUTED WASTES IN SAID ZONE TO MICROWAVE DISCHARGE TO IONZE THE GASES IN THE STREAM AND FORM VAPORIZABLE HIGH REACTIVE FRAGMENTS OF THE ORGANIC MATERIALS WHICH BECOME ENTRAINED IN THE FLOWING GASEOUS STREAM, WHEREIN INTERACTIONS OCCUR BETWEEN THE IONIZED GASES AND REACTIVE FRAGMENTS.
Abstract:
APPARATUS FOR PRODUCTION OF SYNTHETIC PIPELINE GAS OF DESIRED HEATING VALUE BY INTEGRATING ASYSTEM OF PRODUCING SYNTHETIC GAS FROM A CARBONACEOUS MATERIAL IN A GAS GENERATOR WITH A SYSTEM OF PROCESSING A LIQUEFIED NATURAL GAS WHEREBY THE LEANER OUTPUT FROM THE GAS GENERATOR IS ADVANTAGEOUSLY COMBINED WITH THE RICHER OUTPUT FROM THE LIQUEFIED NATURAL GAS SYSTEM TO PROVIDE THE DESIRED GAS HEATING VALUE, AND THE COLD TEMPERATURES OF THE LIQUEFIED NATURAL GAS SYSTEM IS ADVANTAGEOUSLY UTILIZED IN THE GAS GENERATOR SYSTEM.