Abstract:
The invention relates to a method and an apparatus for generating fuel gas from a solid material in a shaft gasifier, and comprises a gasification zone, into which the solid material can be filled, and an oxidation zone designed to oxidize the generated gas connected to the gasifier zone so that the gases generated in the gasifier zone run to the oxidation zone. A first air supply device and a second air supply device downstream of the first air supply in the processing direction of the solid material supply air into the gasification zone. A measurement unit samples the raw gas that is generated in the oxidation zone or of the flammable product gas. A control unit, which is coupled with the measurement unit by means of signal technology, transmits a test signal and controls the air supplied by the second air supply device via the test signal.
Abstract:
A process for the endothermic gasification of solid carbon in an entrained bed facility comprises partial oxidation of fuel(s) and endothermic gasification of solid carbon, preferably preceded by low temperature carbonization such that the carbonization gas is passed to the partial oxidation and the carbonization coke is passed to the endothermic gasification. The hot gas streaming downwardly from the combustion chamber is deflected to produce separation of the liquid slag and is then passed to the endothermic gasification that operates with a rising gas stream and with addition of solid carbon having a grain diameter of up to 20 mm. The speed of the gas at the carbon inlet is higher than, and the speed of the gas at the end of the endothermic gasification is lower than, the suspension rate of the reactive carbon particles, to produce an increase of the relative speed difference between the gas and the carbon particles. Apparatus is also disclosed for carrying out the process.
Abstract:
A gasifier system includes a gasifier chamber, a plurality of nozzles or burners injecting and combusting a mixture including coal and oxygen within the gasifier chamber, and an ash bed disposed proximate a bottom of the gasifier chamber. Concurrent flow is generated within the gasifier such that gas and bi-products generated by the combustion of the mixture flow through the ash bed. The ash bed serves as a filter and reducing volume for the trace carbon not gasified during the combustion process. The hot gases exit the gasifier and enter a gas cooler and then a hot gas filter. Ash is unloaded from the gasifier chamber and is transferred into a quench tank, where ash settles and is removed to atmospheric conditions by a progressive pitched dewatering screw press. The dewatering screw press also serves as a seal to prevent excessive water escaping from the high pressure of gasifier operation.
Abstract:
A method and an apparatus for producing generator gas and activated carbon from solid fuels. A first gasification stage is supplied with fuel by an underfeed charging system and preheated air, the air and fuel being supplied in the same direction. In a second gasification stage and accompanied by the supply of secondary air, an intermediate gasification takes place. Finally, in a third gasification stage, the gas is reacted with glowing coke or charcoal, and the heat of the exiting gas is used for heating the air. The fuel centrally entering the first gasification stage is led from the inside to the outside and then upwards. Part of the entering fuel is precombusted in a precombustion chamber linked with the supply of the preheated air for reducing the oxygen content of the preheated air. In the intermediate gasification stage, the gas with the admixed air is passed through a Venturi nozzle or tube with a diffuser. The flue coal entrained from the first gasification stage is at least partly returned to the throat of the Venturi tube. The return is assisted both by vacuum in the Venturi tube and mechanically.
Abstract:
A process for the generation of a syngas in an entrained-flow gasification process includes a solid, carbon-containing fuel which is introduced via burners into a reactor which also supplies the oxygen for gasification. The fuel is introduced on a burner level where the burners are arranged concentrically around the reaction chamber or in the head area. The syngas obtained is discharged from the reaction chamber via a discharge nozzle, so that the syngas is passed into a collecting chamber for cooling by addition of low-temperature gaseous, vaporous or liquid cooling agents. A quench chamber is provided between the reactor and the collecting chamber. Additional burner levels are in the quench chamber via which a fuel material of renewable fuels or biofuels is introduced into the syngas, so that the heat enthalpy of the syngas can be utilized for the endothermic gasification reaction of the biological raw material. An apparatus for this generation of synthesis gas includes several burner levels, the renewable fuel being supplied to the gasification chamber with or without water vapor or oxygen and the enthalpy of the hot syngas being utilized for the gasification of the renewable fuel.
Abstract:
A technology for producing synthesis gas from crude gas from various gasification processes for solid or liquid fuels. To limit the temperatures in a subsequent strongly exothermic CO shift reaction to adjust the H2/CO ratio, the crude gas which has been freed of dust flows through two shift reactors arranged in series. The first reactor has a specific reaction-kinetically limited catalyst and the second reactor has a conventional sour gas catalyst. The specific catalyst used in the first reactor limits the exothermic shift reaction to such an extent that the reaction temperatures in the first and second reactors remain so low to avoid thermal damage to the catalysts even without introduction of external steam, and the desired gas composition is achieved.
Abstract:
A process for producing synthesis gas (S) from biomass, includes drying the biomass and gasifying the biomass. An equipment to carry out the process is also disclosed. The process further includes: subjecting the outgoing gases (CO2, N2 and H2O) from the gasifying step to a first heat exchange, where the outgoing gases (CO2, N2 and H2O) are cooled, purifying the outgoing gases (CO2, N2 and H2O) to achieve a process gas (P), the purification being effected by eliminating nitrogen (N2) from the outgoing gases (CO2, N2 and H2O), subjecting the process gas (P) to heat exchange, where the process gas (P) is heated, reducing the process gas (P) to synthesis gas (S), subjecting the synthesis gas (S) to heat exchange, where the synthesis gas (S) is cooled and supply air to the gasification is heated.
Abstract:
A solid fuel gasifier includes first wall structure (12) defining a gasification chamber (14) and means (50, 52) to collect particulate solid residue from gasification in the gasification chamber. Second wall structure (16) defines a gas combustion chamber (17) and means (19) is arranged for admitting a flow of hot gases from the gasification chamber to the gas combustion chamber as combustion takes place. Also provided is means (178, 170) to conduct hot gases from the gasification chamber and/or gas combustion chamber into thermal contact with said collected particulate solid residue, for facilitating post-combustion and/or post-reduction of the solid residue. Also disclosed are an agitator bed (52, 182) for fine particulate material, and a method of gasification of solid fuel.
Abstract:
A process for producing liquid steel is disclosed. Carbon monoxide and oxygen may be combusted in a high temperature reactor. Iron and iron oxide materials, along with scrap steel if desired, may be placed in the high temperature reactor. Carbon dioxide produced in the high temperature reactor may be circulated through a back reactor vessel. Coke masses may be placed in the back reactor vessel. The coke may be formed by circulating heated carbon monoxide counter current to crushed coal in a rotary kiln. The carbon dioxide circulated through the back reactor vessel reacts with the coke to form carbon monoxide. The carbon monoxide may be conveyed to the high temperature reactor to be combusted with oxygen to produce the heat for forming the liquid steel.
Abstract:
A process for producing liquid steel is disclosed. Carbon monoxide and oxygen may be combusted in a high temperature reactor. Iron and iron oxide materials, along with scrap steel if desired, may be placed in the high temperature reactor. Carbon dioxide produced in the high temperature reactor may be circulated through a back reactor vessel. Coke masses may be placed in the back reactor vessel. The coke may be formed by circulating heated carbon monoxide counter current to crushed coal in a rotary kiln. The carbon dioxide circulated through the back reactor vessel reacts with the coke to form carbon monoxide. The carbon monoxide may be conveyed to the high temperature reactor to be combusted with oxygen to produce the heat for forming the liquid steel.