Abstract:
An automated cell culturing device, which expands, detaches and prepares cells, ready to be implanted in vivo is disclosed. The device is composed by a multi-layered cell culture chamber, a cell preparation chamber, and critical parameters control units which automatically drive the cell culture medium circulation, change and refill. The device according to the invention is characterized in that all the components contacting cells and culture medium constitute a totally disposable “cartridge” in order to avoid cross-contamination and improve safety. The device is particularly useful for expanding and preparing mesenchymal stem cells for osteoarthritis (OA) therapy, and for other cell based therapies in mammals.
Abstract:
A perfusion bioreactor includes at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.
Abstract:
A perfusion bioreactor includes at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.
Abstract:
Methods, systems, and apparatus for acoustic separation of cellular supporting materials such as microcarriers or microbubbles from cell culture are provided. In one aspect, a method includes flowing a fluid containing the cellular supporting material and the cells through a flow chamber; driving at least one acoustic transducer to launch an acoustic wave from the acoustic transducer positioned on a first wall of the flow chamber to a reflector positioned on a second wall of the flow chamber to create, in the flow chamber, a multi-dimensional field that includes first spatial locales where acoustic pressure amplitude is elevated from a baseline level when the acoustic transducer is turned off, and second spatial locales where acoustic pressure amplitude is substantially identical to the baseline level when the acoustic transducer is turned off, wherein the first wall is opposite to the second wall; preferentially trapping, and gravity separating, the cellular supporting material or the cells at the first or second spatial locales inside the flow chamber; and collecting cells separated from the cellular supporting material using a first collection duct coupled to the flow chamber.
Abstract:
Microorganisms such as microalgae are collected and separated from a host medium such as water. Cellular walls and membranes of the microorganisms are then ruptured to release their lipids using a lipid extraction unit. Thereafter, the lipids from the host medium are collected and separated using a lipid collection and separation unit. Related apparatus, systems, techniques and articles are also described.
Abstract:
An acoustophoresis device made up of modular components is disclosed. Several modules are disclosed herein, including ultrasonic transducer modules, input/output modules, collection well modules, and various connector modules. These permit different systems to be constructed that have appropriate fluid dynamics for separation of particles, such as biological cells, from a fluid.
Abstract:
Device for sorting living cells, comprising at least one support including a surface having adherence properties with respect to said type of living cells, actuators capable of making said surface vibrate at at least one given frequency and a controller for controlling the actuators such that the surface vibrates at a frequency causing the detachment of at least one type of living cells.
Abstract:
A cell detachment device includes: a base; a vessel holder, to which a culture vessel is to be fitted; a guide mechanism configured to guide reciprocating movement of the vessel holder; a collided member configured to collide with the vessel holder when the vessel holder is moving; an urging member configured to urge the culture vessel toward the collided member; and a power imparting mechanism configured to impart, to the vessel holder, power for causing the vessel holder to move.
Abstract:
The present invention relates to a method for inoculating at least one agar culture medium, contained in a Petri dish, with at least one sample likely to contain microorganisms. The method includes the steps of: providing at least one agar culture medium contained in a Petri dish; providing the sample likely to contain microorganisms in liquid form; performing at least one deposition of the liquid sample onto the lid of the Petri dish such that the liquid sample can be transferred from the lid to the agar culture medium; and spraying the liquid sample, initially deposited onto the cover, onto the agar culture medium by vibrating the Petri dish.
Abstract:
A perfusion bioreactor includes at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.