Abstract:
For example, two intake valves for each cylinder each are driven by a selected one of cams via a corresponding rocker arm. Each rocker arm includes a support portion and a pressing portion (distal end portion). The support portion is rockably supported by a cylinder head. The pressing portion is configured to press a stem of the corresponding intake valve. The support portion of one of the rocker arms deviates to one side in an axis X direction (cam axial direction) with respect to the distal end portion. The support portion of the other one of the rocker arms deviates to the other side in the axis X direction with respect to the distal end portion.
Abstract:
A detent assembly and a method of assembling the detent assembly are disclosed. The detent assembly includes a first shaft rotatable about a longitudinal axis and has an outer surface. The first shaft defines a cavity having an opening defined by the outer surface. The detent assembly further includes a camshaft defining an aperture along the longitudinal axis to present an inner wall of the camshaft that circumscribes the longitudinal axis. The inner wall defines a plurality of recesses spaced from each other. The detent assembly also includes a self-contained plunger unit that is secured to the first shaft in the cavity as a unit. A plunger of the self-contained plunger unit engages the inner wall as the camshaft is disposed over the self-contained plunger unit so that the plunger rests in one of the recesses of the camshaft to selectively secure together the first shaft and the camshaft.
Abstract:
The present invention relates to a variable valve timing system for an internal combustion engine which cyclically opens and closes a port providing fluid communication between a combustion chamber and a conduit leading thereto and which delays the closure of the port in response to a signal indicative of the power output required of the engine in order to vary the ratio of the mass of fluid inducted into the chamber to the mass of fluid expelled from said chamber during the period the port is open so that the mass of fluid retained in the chamber after closure of the port can be controlled without the use of a throttle valve.
Abstract:
A slide cam system includes a camshaft comprising a carrier shaft with slide cam elements that each comprise a slotted switching member having a switching groove. The slide cam elements are displaceable axially relative to the carrier shaft by an actuator pin. A displacement element is arranged parallel with a longitudinal axis of the carrier shaft, and the displacement element is axially displaceable in a direction of the longitudinal axis. The displacement element has a first coupling pin arranged in a region of the first slide cam element and a second coupling pin arranged in a region of the second slide cam element. The coupling pins cooperate with a slotted switching member of the associated slide cam element such that as a result of the displacement element a movement initiated by the actuator pin of the first slide cam element can be transmitted to the second slide cam element.
Abstract:
A variable valve-operating device for an internal combustion engine has a cam carrier with cam lobes formed therearound to act on an engine valve and with a speed increasing side lead groove and a speed decreasing side lead groove formed therearound to be engaged with a speed increasing side switching pin and a speed decreasing side switching pin, respectively, to axially shift the cam carrier, to selectively make one of the cam lobes to be operative. A speed increasing side entry lead groove portion of the speed increasing side lead groove is formed in a position axially overlapping a low speed steady position lead groove portion of the speed decreasing side lead groove. A speed decreasing side entry lead groove portion of the speed decreasing side entry lead groove is formed in a position axially overlapping a high speed steady position lead groove portion of the speed increasing side lead groove. The variable valve-operating device can thus be miniaturized by reducing the axial width of the cam carrier.
Abstract:
A valve system includes: a cam shaft including a shaft section and a plurality of cam element sections; and a plurality of operation members that moves the cam element sections in an axial direction. The plurality of operation members include a common operation member that is provided in common between end face cams opposed to each other of the cam element sections of two cylinders disposed adjacent to each other and continuous in ignition order and that engages with the respective end face cams when both the cam element sections are close to each other, and individual operation members that are individually provided for end face cams opposed to each other of the cam element sections of two cylinders disposed adjacent to each other and discontinuous in ignition order and end face cams located at opposite ends of a cylinder row and that engage with the respective end face cams.
Abstract:
The invention relates to a device for a valve train for changing the lift of gas exchange valves of an internal combustion engine, having a camshaft rotatably mounted in a housing, which camshaft consists of an arrangement of, in succession coaxially from the inside to the outside, at least one push rod, at least one carrier shaft and at least one cam unit provided with at least two different cams and at least one thrust pin, and the cam shaft is surrounded at least partially by at least one shift gate mounted non-rotatably and axially movably in the housing. At least one change-over pin and at least one support pin are immovably connected to the push rod, wherein the change-over pin and the support pin extend in openings at least right through the carrier shaft and the change-over pin can be brought into operative contact with at least one switching contour on the shift gate and the support pin can be brought into operative contact with at least one support contour on the shift gate.
Abstract:
A method for operating an electromagnetic actuator (10) with an actuating pin (9) is proposed which comprises the following steps:—determining a pin actuation actual dead time (t11), during which the magnetic armature (15) is substantially immobile while a magnetic coil (12) is supplied with current, wherein the actual dead time ends with the current break-in at the magnetic coil, as a result of counter induction of the magnetic armature overcoming the magnetic force threshold;—determining, before a subsequent pin actuation, the starting time of the magnetic coil current supply, wherein the starting point of the current is advanced compared with that of the target movement start of the pin out of the actuator housing (13) and the determined actual dead time.
Abstract:
The present disclosure provides a shift gate for a sliding cam system with at least two shifting grooves for engaging at least one actuator pin. The shifting grooves extend in a circumferential direction of the shift gate. The two shifting grooves are at least partially separated from one another in an entry region of the actuator pin. In a transition region adjacent to the entry region, they converge on each other in such a manner that they merge into each other and form a common groove. The shifting grooves each comprise at least one groove flank, in particular a lead flank and/or a runoff flank, which narrows the shifting grooves at least in the transition region, in such a manner that a groove width of the shifting grooves in the transition region is smaller than a groove width of the shifting grooves in the entry region of the actuator pin.
Abstract:
In starting the engine, if it is determined that large cams are not completely prepared for all driving cams, valve closing timings of all intake valves are changed by driving the VVT so that all of the cylinders have equal in-cylinder filling efficiency. A fuel injection amount of each cylinder is determined by a feedforward control assuming that the large cams are completely prepared for all of the driving cams. When the valve closing timing of all of the intake valves are changed by driving the VVT to equalize the in-cylinder filling efficiencies of all of the cylinders, all of the cylinders have substantially equal in-cylinder air-fuel ratios.