Abstract:
An air cleaner system that potentially reduces debris entering a prime mover (e.g., engine) during removal/replacement of an air cleaner. In one embodiment, the engine includes a shroud defining an air cleaner compartment. The engine further includes a tubular air feed port defining a combustion air intake. The air feed port terminates at an end face located at or within the air cleaner compartment, and a lower portion of the end face is notched relative to other portions of the end face. In other embodiments, an engine oil drain system is provided that selectively positions a distal end of an oil drain tube at a drain position located away from the engine. The oil drain tube may also be repositioned to a stored position, wherein the distal end of the drain tube attaches to a nipple connected to either an engine housing or surrounding structure.
Abstract:
A device comprises an engine including a crank shaft with a first end portion, a generator motor including a rotor shaft with a second end portion, a flywheel with first and second connection portions connected to the first and second end portions respectively, and a fastening member. At least one of the connection portions constitutes an alignment connection portion. The first or second end portion constitutes an alignment end portion. One of the alignment connection portion and the alignment end portion includes a concave portion having an alignment inner surface, and the other includes a convex portion having an alignment outer surface. One surface of the alignment inner and outer surfaces is a tapered surface. The fastening member fastens the alignment connection portion and the alignment end portion to each other to bring a tip end of the other surface into pressure contact with the tapered surface.
Abstract:
An air cleaner system that potentially reduces debris entering a prime mover (e.g., engine) during removal/replacement of an air cleaner. In one embodiment, the engine includes a shroud defining an air cleaner compartment. The engine further includes a tubular air feed port defining a combustion air intake. The air feed port terminates at an end face located at or within the air cleaner compartment, and a lower portion of the end face is notched relative to other portions of the end face. In other embodiments, an engine oil drain system is provided that selectively positions a distal end of an oil drain tube at a drain position located away from the engine. The oil drain tube may also be repositioned to a stored position, wherein the distal end of the drain tube attaches to a nipple connected to either an engine housing or surrounding structure.
Abstract:
A method of operating an internal combustion engine having a housing with a recess, and a piston rotatably mounted in the housing, wherein the housing and the piston form, over the course of shaft rotation, initial, second and third volumes in differing amounts for the phases of compression, combustion and expansion, in a manner that is smooth and continuous, which method includes (a) compressing air into a chamber formed by the recess and the piston, (b) introducing fuel into the chamber of compressed air, and (c) igniting the mixture of compressed air and fuel.
Abstract:
A crankshaft having a front end, a rear end, and a central axis extending from the front end to the rear end is provided. The crankshaft includes a front crankpin, a rear crankpin, and one or more central crankpins. The front crankpin is located in proximity to the front end and the rear crankpin is located in proximity to the rear end. Further, the one or more central crankpins are located substantially equidistant from the front crank pin and the rear crankpin. The crankshaft further includes pairs of counterweights disposed on each side of the front crankpin, the rear crankpin and the one or more central crankpin. The counterweights are disposed such that counterweights in each pair of counterweights are angularly offset with respect to each other
Abstract:
Integrated, multi-cylinder opposed engine constructions include a unitary support structure to which cylinder liners are removeably mounted and sealed and on which crankshafts are rotatably supported. The engine constructions include a cooled piston with a resiliently deformable joint connecting crown and skirt and a cooled cylinder liner with wipers to manage lubricant in the cylindrical interstice between the cylinder bore and the piston skirts.
Abstract:
Methods, devices, and systems for power generation through liquid piston internal combustion engine. The liquid piston internal combustion engine of the invention utilizes a novel, synergetic combination of internal combustion and steam piston engines within the framework of one and the same system. The engine may comprise a plurality of cylinders, each having a liquid piston.
Abstract:
The disclosure relates to fluid working devices including reciprocating internal combustion engines and pumps. A number of arrangements for pistons and cylinders of unconventional configuration are described, mostly intended for use in IC engines operating without cooling. Included are toroidal combustion or working chambers, some with fluid flow through the core of the toroid, pistons reciprocating between pairs of working chambers, tensile valve actuation, tensile links between piston and crankshaft, energy absorbing piston-crank links, crankshafts supported on gas bearings, cylinders rotating in housings, injectors having components reciprocate or rotate during fuel delivery. In some embodiments pistons mare rotate while reciprocating. High temperature exhaust emissions systems are described, including those containing filamentary material, as are procedures for reducing emissions during cold start by means of valves at reaction volume exit.
Abstract:
An internal combustion cylinder head is comprised of a housing formed from three sections horizontally divided along the axis of two parallel horizontal gear shafts and a horizontal parallel camshaft located above them. The valve stems pass between the gear shafts and the valve faces are located below the gear shafts. Meshing the gear shafts together and driving them from the crankshaft form the gear compressor. Internal combustion passages are formed in the housing between the air compressor and an exhaust valve. The compressor is divided into four pumps, two outer oil pumps and two middle air pumps that pump air into the combustion passages. Two internal air intake passages surround the housing enclosing the air compressor and serve to cool the cylinder head as air is drawn through them into the air compressor. When the engine is started the fuel and air pumped into the cylinder head is compressed and ignited in the combustion passages located in the cylinder head between the compressor and central exhaust valve. Compressing and igniting the fuel charge in passages in the cylinder head instead of in the cylinder allows the engine to achieve two-cycle operation. Continually forcing air into these passages increases power.
Abstract:
The invention is an apparatus consisting of a set of parts that can be assembled into a variety of internal-combustion engine analogs. The set of parts comprises a set of platform parts that can be assembled into a platform having a platform rotary axis and a platform reference axis normal to the platform rotary axis and a set of driver parts that can be assembled with a set of platform parts into a driver assembly supported by the platform. The driver assembly comprises one or more drivers, each driver containing a first driver point and a second driver point. The first driver point travels back and forth along a driver line segment while the second driver point travels in a driver circle around a driver-assembly rotary axis.