Abstract:
A method of interrupt control for a control unit of an electronic system includes receiving digital data; determining a value of the digital data; and sending interrupt signals to a host by the following methods according to the value: when the control unit is in a second signal sending status and after the value of the digital data increases to be greater than a first threshold and remains greater than the first threshold for a first period of time, switching the control unit to a first signal sending status; and when the control unit is in the first signal sending status and after the value of the digital data decreases to be smaller than a second threshold and remains smaller than the second threshold for a second period of time, switching the control unit to the second signal sending status. The second threshold is smaller than the first threshold.
Abstract:
A motion sensing device, for a motion sensing system having a light emitting device for generating light of a first frequency range, includes a motion sensing area comprising a sensor array, for sensing light of the first frequency range to generate two-dimensional motion information of a first axis and a second axis; and a distance sensing area, configured at an outside of the motion sensing area, for sensing light of the first frequency range to generate distance information of a third axis.
Abstract:
A motion sensor includes: a substrate, which includes a plurality of lead frame layers and a plurality of ceramic layers; a light source, disposed on the substrate, for emitting light; a sensing device, disposed on the substrate, for receiving the light to perform motion sensing; a cover, for fixing and protecting the light source and the sensing device; and an adhesive, for gluing the cover to the substrate, the adhesive including a component capable of blocking the light; wherein the light is infrared light, visible light or ultraviolet light.
Abstract:
A motion sensing device for sensing infrared rays, the motion sensing device includes a substrate; a sensing unit, configured on the substrate for sensing the infrared rays; a stabilizing layer, covering on the sensing unit for fixing and protecting the sensing unit, wherein the stabilizing layer has an opening; a protection layer, formed on the opening; and a coating layer, covering the stabilizing layer for absorbing infrared rays, wherein the coating layer does not cover the opening.
Abstract:
A motion sensing device for sensing infrared rays, the motion sensing device includes a substrate; a sensing unit, configured on the substrate for sensing the infrared rays; a stabilizing layer, covering on the sensing unit for fixing and protecting the sensing unit, wherein the stabilizing layer has an opening; a protection layer, formed on the opening; and a coating layer, covering the stabilizing layer for absorbing infrared rays, wherein the coating layer does not cover the opening.
Abstract:
A wavelength-conversion system includes a wavelength-conversion target that radiates an energy output when an energy input of a different wavelength is incident upon the wavelength-conversion target. An input structure directs the energy input of the input-energy wavelength to be incident upon the wavelength-conversion target. A target baseline temperature modifier either controllably heats or controllably cools the wavelength-conversion target independently of any heating or cooling effect of the energy input or the energy output. A detector is positioned so that the energy output of the output-energy wavelength emitted from the wavelength-conversion target is incident upon the detector.
Abstract:
A motion sensor includes: a substrate, which includes a plurality of lead frame layers and a plurality of ceramic layers; a light source, disposed on the substrate, for emitting light; a sensing device, disposed on the substrate, for receiving the light to perform motion sensing; a cover, for fixing and protecting the light source and the sensing device; and an adhesive, for gluing the cover to the substrate, the adhesive including a component capable of blocking the light; wherein the light is infrared light, visible light or ultraviolet light.
Abstract:
A motion sensing device for sensing infrared rays includes a substrate; an optical module, including a first spacer layer, coupled to the substrate; a first glass layer, formed on the first spacer layer; a second spacer layer, formed on the first glass layer; a second glass layer, formed on the second spacer layer; a third spacer layer, formed on the second glass layer; a first lens, bonding on a first side of the second glass layer; and a second layer, bonding on a second side relative to the first side of the second glass layer; and a coating layer, covered on the optical layer for shielding the infrared rays, wherein the coating layer does not cover the first lens.
Abstract:
A method of interrupt control for a control unit of an electronic system includes receiving digital data; determining a value of the digital data; and sending interrupt signals to a host by the following methods according to the value: when the control unit is in a second signal sending status and after the value of the digital data increases to be greater than a first threshold and remains greater than the first threshold for a first period of time, switching the control unit to a first signal sending status; and when the control unit is in the first signal sending status and after the value of the digital data decreases to be smaller than a second threshold and remains smaller than the second threshold for a second period of time, switching the control unit to the second signal sending status. The second threshold is smaller than the first threshold.
Abstract:
A method and apparatus for sensing the wavelength of a laser beam using an optogalvano effect by atoms or molecules in plasma. Atoms or molecules in the plasma are irradiated with the laser beam. The impedance of the plasma at that time is sensed to sense whether the wavelength of the laser beam coincides with a predetermined absolute wavelength. The sensed result is used to control the wavelength of the laser beam.