Abstract:
An optical measuring system for determining a measured variable in a medium includes a light source and a container with medium. The light source radiates measuring light into the container on a first light path, wherein the measuring light is converted into reception light as a function of the measured variable and radiates reference light past the container on a second light path. A diffusion disk is arranged between the container and a receiver, wherein the diffusion disk is configured and arranged such that the reception light impinges on the receiver through the diffusion disk. The diffusion disk is configured such that the reference light impinges on the receiver through the diffusion disk. The receiver receives the reception light and the reference light, and a data processing unit connected to the light source and to the receiver determines the measured variable from the measuring light and the reception light.
Abstract:
Various characteristics in laser absorption spectroscopy using multiple reflections are improved. A gas measurement apparatus 1 according to the present disclosure measures a gas concentration by laser absorption spectroscopy. The gas measurement apparatus 1 includes a first corner cube 10, a second corner cube 20 disposed opposite the first corner cube 10, a laser source 30 that emits a laser beam to the first corner cube 10, and a light receiving element 40 that receives the laser beam that has been reflected multiple times through a target gas between the first and second corner cubes 10 and 20. The second corner cube 20 is disposed so that a centerline parallel to incident and exit light centering at incident and exit positions of the first corner cube 10 is displaced from a centerline parallel to incident and exit light centering at incident and exit positions of the second corner cube 20.
Abstract:
A sample analyzer has an illuminator for illuminating an assay sample to cause luminescence, and a support for a sample vessel containing the assay sample. The support is adapted to position the assay sample proximate the illuminator. A detector is positioned along an optical axis extending from the illuminator, through the positioned assay sample, to the detector, so as to detect the luminescence from the assay sample. A reflector is removably disposed between the illuminator and the assay sample so as to reflect a portion of the luminescence back through the positioned assay sample toward the detector.
Abstract:
An apparatus for inspecting the top and bottom surfaces of a tape or sheet has a device to magnify the surface of the tape or sheet, with its objective lens disposed to face the top surface of the tape or sheet. The apparatus also has an optical transmittion system that transmits an image of the bottom surface of the tape or sheet through a focusing unit and four reflectors, each of which is adapted to bend the path of light rays 90 degrees. Of the four reflectors, one that faces the objective lens is retractable from the light-ray path in the optical transmission system. The reflector facing the objective lens may be a half-coated mirror. Fixed in the light-ray path in the optical transmission system, the half-coated mirror is not retractable.
Abstract:
An atomic absorption spectroscopy photometer comprising: sample atomizing means for heating to atomize a sample; a plurality of light sources disposed at a like number of light flux incidence positions for causing light having required wavelengths to enter the atomized sample; means for measuring the degrees of light absorption of a plurality of elements contained in the sample by detecting the fluxes of light which have passed through the atomized sample; a plurality of holder means for holding the plurality of light sources, the plurality of light sources being larger in number than the plurality of the light flux incidence positions; and means for setting required ones of the light sources of the plurality at the corresponding light flux incidence positions by moving the holder means.
Abstract:
A metrology system includes an illumination source to generate an illumination beam, a multi-channel spectral filter, a focusing element to direct illumination from the single optical column to a sample, and at least one detector to capture the illumination collected from the sample. The multi-channel spectral filter includes two or more filtering channels having two or more channel beam paths. The two or more filtering channels filter illumination propagating along the two or more channel beam paths based on two or more spectral transmissivity distributions. The multi-channel spectral filter further includes a channel selector to direct at least a portion of the illumination beam into at least one selected filtering channel to filter the illumination beam. The multi-channel spectral filter further includes at least one beam combiner to combine illumination from the two or more filtering channels to a single optical column.
Abstract:
A sample analyzer has an illuminator for illuminating an assay sample to cause luminescence, and a support for a sample vessel containing the assay sample. The support is adapted to position the assay sample proximate the illuminator. A detector is positioned along an optical axis extending from the illuminator, through the positioned assay sample, to the detector, so as to detect the luminescence from the assay sample. A reflector is removably disposed between the illuminator and the assay sample so as to reflect a portion of the luminescence back through the positioned assay sample toward the detector.
Abstract:
Apparatus, systems and methods are provided for production and integration of compact illumination schemes. More particularly, disclosed embodiments relate to apparatus/systems and methods for production of highly compact illumination schemes, whereby photoacoustic waves are induced in a target sample. Additionally, the disclosed apparatus/systems and methods are effective to produce compact and portable integrated transducer-illumination arrays. Apparatus disclosed generally include at least one lighting source and a beamsplitting assembly. Systems disclosed generally include one or more apparatus for the production of compact lighting schemes, an ultrasonic transducer assembly and means for coupling the one or more apparatus and US transducer assembly with a target sample.
Abstract:
Apparatus, systems and methods are provided for production and integration of compact illumination schemes. More particularly, disclosed embodiments relate to apparatus/systems and methods for production of highly compact illumination schemes, whereby photoacoustic waves are induced in a target sample. Additionally, the disclosed apparatus/systems and methods are effective to produce compact and portable integrated transducer-illumination arrays. Apparatus disclosed generally include at least one lighting source and a beamsplitting assembly. Systems disclosed generally include one or more apparatus for the production of compact lighting schemes, an ultrasonic transducer assembly and means for coupling the one or more apparatus and US transducer assembly with a target sample.