Abstract:
A method of examining a position of at least one board-support pin which is positioned on a board-support base for supporting a printed-circuit board under a back surface thereof, the method including the steps of taking an image of the board-support pin, at a position opposed to a free end of the pin, judging whether the position of the board-support pin is appropriate, based on the taken image, and producing judgment information indicative of a result of the judgment.
Abstract:
A missing hole detector to detect a missing or misplaced hole in a (e.g., sheet metal) workpiece. The missing hole detector is preferably located at a punching station within the upper turret of a CNC punch press. A pushing force generated during the downstroke of a ram causes a test probe of the missing hole detector to move towards the workpiece under test. A switching circuit connected to a transmitter is responsive to the movement of the test probe. If the test probe is moved into a hole so as to penetrate the workpiece, the switching circuit is opened and the transmitter is disabled. If the test probe is otherwise moved into contact with but fails to penetrate the workpiece because a hole is absent or misplaced, the switching circuit is closed and the transmitter is energized. The transmitter now transmits a stream of data by way of an RF wireless communication path to a receiver. The receiver is adapted to emit a visual and/or audible warning signal and/or cause the punch press to be shut down as a sign that a missing or misplaced hole has been detected in the workpiece.
Abstract:
A method and apparatus for machining a part for an assembly. First sensor data is acquired for a surface of a first part from a first sensor system. Second sensor data is acquired for a set of existing holes in a second part from a second sensor system. A surface model of the surface of the first part is generated using the first sensor data. First offset data is computed based on a nominal model of a third part that is nominally positioned relative to the surface model within a three-dimensional virtual environment. Second offset data is computed for the set of existing holes using the second sensor data. Overall offset data is generated using the first and second offset data, wherein the overall offset data is used to drill a set of holes in the third part for use in fastening the third part to the second part.
Abstract:
An automated location system that includes providing the number of rows and columns of a receptacle to the automated location system; scanning the receptacle to determine changes in reflectivity; creating an X values list and a Y values list from the scan; and determining a location for each of a cavity from the X values list and from the Y values list.
Abstract:
A probing system that checks a pattern formed by a plurality of features of an object. The system includes an input device that receives an ideal position and an ideal set of dimensions of each of the plurality of features, as well as an acceptable tolerance for the plurality of features. The input device generates a first signal. A probe device is electrically connected to the input device to receive the first signal, and in response, directs a probe to a location of samples. The probe device outputs a second signal indicative of a measured location of each of the samples. A processor is electrically connected to the probe device and the input device, and performs the operations of receiving and storing in memory the first signal indicative of the ideal position and tolerance of each of the plurality of features, receiving and storing in the memory the second signal indicative of the measured location of each of the samples from the probe device, and calculating a measured position of each of the plurality of features based on the measured location of each of the samples. The processor also offsets the stored ideal position of each of the plurality of features by a predetermined value of variance to an adjusted ideal position of each of the plurality of features, and determines whether the measured position of each of the plurality of features falls within the acceptable tolerance of the respective adjusted position of each of the plurality of features.
Abstract:
An automated system for manipulating a workpiece includes a machining device, a locating device configured to determine a position of a workpiece, and a positioning system operatively connected to the machining device and being configured to adjust a position of the machining device to align a centerline of the machining device with a longitudinal axis of the workpiece, based upon the determined position of the workpiece. The machining device includes a stabilizing mechanism to engage the workpiece to maintain the workpiece in the determined position, and a cutting element for performing a machining operation on the workpiece.
Abstract:
A method of inspecting an object with a camera probe for capturing an image of an object, the camera probe being movable along a path by a measurement apparatus, at least a part of the camera probe being rotatable about at least one axis. The method includes: a) the measurement apparatus moving the camera probe relative to the object along an inspection path and b) for at least one period as the camera probe moves along the inspection path: turning at least a part of the camera probe about the at least one axis thereby slowing the passage of a feature of interest on the object across the camera probe's field of view; and capturing at least one image of the feature of interest during at least a portion of the turning.
Abstract:
A missing hole detector to detect a missing or misplaced hole in a (e.g., sheet metal) workpiece. The missing hole detector is preferably located at a punching station within the upper turret of a CNC punch press. A pushing force generated during the downstroke of a ram causes a test probe of the missing hole detector to move towards the workpiece under test. A switching circuit connected to a transmitter is responsive to the movement of the test probe. If the test probe is moved into a hole so as to penetrate the workpiece, the switching circuit is opened and the transmitter is disabled. If the test probe is otherwise moved into contact with but fails to penetrate the workpiece because a hole is absent or misplaced, the switching circuit is closed and the transmitter is energized. The transmitter now transmits a stream of data by way of an RF wireless communication path to a receiver. The receiver is adapted to emit a visual and/or audible warning signal and/or cause the punch press to be shut down as a sign that a missing or misplaced hole has been detected in the workpiece.
Abstract:
Procedures for adjusting or reseting the pressure used to swage needles to suture at a needle swaging station. The forces required to break the sutures from the needles are measured and added to a data base; and each time a value, or sample, is added to that data base, an average of all the sample values in the data base is calculated. Each time an average value is calculated, that value is compared to a first range, referred to as a reject range. If any calculated average value falls outside that reject range, then the swaging pressure is adjusted and the procedure is restarted, with a new, or empty, data base. Also, once the sample reaches a given size, such as eight or nine samples, the calculated average values are also compared to a second range, referred to as an accept range, and which is within and narrower than the reject range. If a calculate average value is within this accept range, the swaging pressure is considered acceptable and the procedure terminates immediately.
Abstract:
A method and apparatus for machining a part for an assembly. First sensor data is acquired for a surface of a first part from a first sensor system. Second sensor data is acquired for a set of existing holes in a second part from a second sensor system. A surface model of the surface of the first part is generated using the first sensor data. First offset data is computed based on a nominal model of a third part that is nominally positioned relative to the surface model within a three-dimensional virtual environment. Second offset data is computed for the set of existing holes using the second sensor data. Overall offset data is generated using the first and second offset data, wherein the overall offset data is used to drill a set of holes in the third part for use in fastening the third part to the second part.