摘要:
One embodiment relates to an apparatus for adjustment of local magnetic strength in a magnetic device. A stage holds the magnetic device, and a sensor measures a magnetic field at locations above the magnetic device so as to generate magnetic field data. A computer system detects a non-uniformity in the magnetic field from the magnetic field data and determines a location and a duration for application of a pulsed laser beam to correct the non-uniformity. A laser device applies the pulsed laser beam at said location for said duration. Another embodiment relates to a method of adjusting local magnetic strength in a magnetic device. Another embodiment relates to a system for fine-tuning a magnet array with localized energy delivery. Other embodiments, aspects and features are also disclosed.
摘要:
An integrated magnetic element is provided, which comprises at least two magnetic elements of dissimilar materials. The integrated magnetic element is subjected to the same magnetomotive force, in order to induce the same magnetization in each element. The resulting integrated magnetic element will have a force of attraction or repulsion greater than that of a magnet comprising only one magnetic element and thus will do more useful work when incorporated into a magnetic device such as a solenoid, relay, rotor of a motor, or memory device.
摘要:
One embodiment relates to an apparatus for adjustment of local magnetic strength in a magnetic device. A stage holds the magnetic device, and a sensor measures a magnetic field at locations above the magnetic device so as to generate magnetic field data. A computer system detects a non-uniformity in the magnetic field from the magnetic field data and determines a location and a duration for application of a pulsed laser beam to correct the non-uniformity. A laser device applies the pulsed laser beam at said location for said duration. Another embodiment relates to a method of adjusting local magnetic strength in a magnetic device. Another embodiment relates to a system for fine-tuning a magnet array with localized energy delivery. Other embodiments, aspects and features are also disclosed.
摘要:
The idea of the invention is to form a cavity in a multilayer substrate at the point of the structure to be trimmed. This enables the embedding of tolerance critical components inside substrates, such as printed circuit boards, modules, and sub-systems. Trimming is done through the cavity using, for example, a laser. After trimming the cavity is easy to fill in with a suitable dielectric material, or to cover otherwise, e.g. by using a lid, or to leave the cavity uncovered.
摘要:
Method of making an anisotropic permanent magnetic body which has a (B.H).sub.max of at least 1.4 .times. 10.sup.6 Gauss . Oersted and a remanence of at least 2500 Gauss, utilizes magnetic powder particles having a coercivity .sub.J H.sub.C at least equal to the actual remanence B.sub.r of the finally prepared magnetic body, a remanence 4.pi.J.sub.r equal to about 1.3 to 1.6 of the actual remanence B.sub.r of the finally produced magnetic body and a fullness factor ##EQU1## which is at least 0.6.
摘要:
A method of manufacturing a permanent magnet for a rotor of an axial flux electric machine is described herein. The method includes forming multiple permanent magnet (PM) pieces to have the same shape. Each of the PM pieces has an inner radial surface, an outer radial surface, and a pair of side surfaces extending between the inner and outer radial surfaces. The method further includes attaching at least one of the side surfaces of each of the PM pieces to one of the side surfaces of another one of the PM pieces to form partitions configured to extend in a radial direction of the rotor.
摘要:
The idea of the invention is to form a cavity in a multilayer substrate at the point of the structure to be trimmed. This enables the embedding of tolerance critical components inside substrates, such as printed circuit boards, modules, and sub-systems. Trimming is done through the cavity using, for example, a laser. After trimming the cavity is easy to fill in with a suitable dielectric material, or to cover otherwise, e.g. by using a lid, or to leave the cavity uncovered.
摘要:
The idea of the invention is to form a cavity in a multilayer substrate at the point of the structure to be trimmed. This enables the embedding of tolerance critical components inside substrates, such as printed circuit boards, modules, and sub-systems. Trimming is done through the cavity using, for example, a laser. After trimming the cavity is easy to fill in with a suitable dielectric material, or to cover otherwise, e.g. by using a lid, or to leave the cavity uncovered.
摘要:
A control device for timed control of a filling pressure during filling of a press die with a pasty or slip-like mass has a pressure sensor detecting a pressure in the press die, a threshold stage to which a corresponding pressure signal is fed from the pressure sensor, a timing element on which the threshold stage acts to maintain a filling pressure at an intended value during determinable holding time, a second threshold stage to which the pressure signal can be fed, and a logical gate to which outputs of the two threshold stages are connected and which generate a trigger signal for timing element when a particular value simultaneously exceeds a first threshold value of the first threshold stage and falls below a second threshold value of the second threshold stage.
摘要:
A method for manufacturing an element having magnetic poles, includes:—supplying a magnetization block including a first main face and a second main face between them delimiting a magnetization-block thickness;—machining, over just part of the thickness of the magnetization block, a first set of initial slots, starting from the first main face, so that the magnetization block remains in one piece;—pouring a first connecting material into the initial slots;—machining a set of complementary slots, forming continuations of the initial slots of the first set over the entire thickness of the magnetization block, so as to form a plurality of individual magnets separate from one another, the individual magnets being held together by the first connecting material.