Abstract:
A damper system may include an electrically adjustable hydraulic shock absorber having an electromechanical valve and a damper controller. The damper controller may include a solenoid driver circuit electrically coupled to the electromechanical valve, and disposed at the shock absorber. The solenoid driver circuit may be operable to drive the electromechanical valve in an open state in which hydraulic fluid flows between a pressure tube and a reserve tube. The solenoid driver circuit may include a plurality of transistors that are operable to generate a first current to place the electromechanical valve in the open state and a second current less than the first current to hold the electromechanical valve in the open state.
Abstract:
An exemplary contactor control system and method to reduce the amount of sound during the translation of an automotive contactor from a closed state to an open state is provided. The contactor has an electrical coil and first and second electrical contacts. The control system includes a microcontroller and a high side driver circuit. The microcontroller generates a pulse width modulated signal that is applied to the high side driver circuit and decreases a duty cycle thereof to decrease a first control voltage applied to the electrical coil over a time interval. The microcontroller maintains a duty cycle for another time interval to maintain the contactor in the closed operational state. Next, the microcontroller decreases the duty cycle to reduce a speed of a contactor armature prior to contacting a stop member to reduce an amount of sound while transitioning the contactor to the open state.
Abstract:
A circuit for use with a contactor including at least one contact is provided. The circuit includes a first segment including a voltage source, a first coil, a second coil, and a first transistor, wherein the first segment is configured to selectively conduct a closing current through the first coil, the second coil, and the first transistor to close the at least one contact. The circuit further includes a second segment including the first coil, a second transistor, and a first diode, wherein the second segment is configured to selectively conduct a holding current through the first coil, the second transistor, and the first diode to hold the at least one contact closed, and wherein the first diode is arranged such that substantially all current produced by the voltage source flows through the first coil.
Abstract:
A method in a control unit for closing a contactor device. The control unit is configured to enable the movement between the closed and opened position by energizing a coil of an electromagnetic circuit. The method includes applying a voltage over the coil; determining, during a first period of time, current through the coil and voltage over the coil and estimating based thereon model parameters for a model predicting the behavior of the current through the coil if the contactor device were to stay in an open position, and measuring, after the ending of the first period of time, current through the coil and determining a difference between, on the one hand the measured current and, on the other hand a predicted current of the model, and repeating the measuring and determining until a state change from open position to closed position is detected by the difference in current.
Abstract:
The disclosure provides a drive circuit for n contactors, which circuit comprises a first input and a second input as well as n first connections and n second connections, wherein a first connection and a second connection in each case can be respectively connected to one of the two connections of a drive coil of one of the n contactors in each case. According to the disclosure, the drive circuit also comprises an adjustable holding voltage source, the first pole of which is connected to the second input and the second pole of which is connected to the first of the first connections. A method for driving n contactors is also disclosed.
Abstract:
A smart plug for coupling an electric vehicle to a power supply includes a relay including contacts, the relay configured to operate in a closed state to enable power to be supplied to the electric vehicle and an open state to prohibit power from being supplied to the electric vehicle. The smart plug also includes a microcontroller (MCU) coupled to the relay, the microcontroller outputting a control signal to operate the relay in the closed state. The smart plug further includes a zero crossing detector (ZCD) coupled to the relay, the ZCD outputting a close signal to the relay when a voltage of the power is substantially zero and outputting an open signal to the relay when a current of the power is substantially zero.
Abstract:
The present invention relates to a relay (1), having a first terminal (2), a second terminal (3), a contact (4) which in a closed state brings about an electrical connection between the first and second terminals (2, 3) and which in an opened state electrically disconnects the first and second terminals (2, 3), a first electromagnet (5) which is configured in such a way that it places the contact (4) in the closed state if the first electromagnet (5) is switched on, and a second electromagnet (6) which is configured in such a way that it keeps the contact (4) in the closed state if the contact (4) is in the closed state and the second electromagnet (6) is switched on.
Abstract:
An electromagnetic relay, in particular a motor vehicle relay, contains a magnet yoke, a relay coil, a hinged armature which is pivotable about an axis of rotation and on which a moving contact, as working or switchover contact, is retained relative to at least one fixed contact. A piezo actuator is provided, which keeps the working or switchover contact closed when the relay coil is de-energized as a result of the actuation of the piezo actuator.
Abstract:
A load control device for controlling an amount of power delivered from an alternating current (AC) power source to an electrical load includes a relay operable to be coupled in series electrical connection between the AC power source and the electrical load. The relay has one or more relay contacts. The load control device includes a zero-cross detector operable to detect zero crosses of the alternating current and to generate zero cross signals, and a controller operatively coupled to a control input of the relay and the zero-cross detector for rendering the controllably conductive device conductive and non-conductive. The controller determines a relay actuation adjustment such that the contact reliably completes bouncing just prior to a zero cross and may initiate an actuation of the relay based on the actuation adjustment and the zero cross signal.
Abstract:
A smart plug for coupling an electric vehicle to a power supply includes a relay including contacts, the relay configured to operate in a closed state to enable power to be supplied to the electric vehicle and an open state to prohibit power from being supplied to the electric vehicle. The smart plug also includes a microcontroller (MCU) coupled to the relay, the microcontroller outputting a control signal to operate the relay in the closed state. The smart plug further includes a zero crossing detector (ZCD) coupled to the relay, the ZCD outputting a close signal to the relay when a voltage of the power is substantially zero and outputting an open signal to the relay when a current of the power is substantially zero.