Planar waveguides with enhanced support and/or cooling features for high-power laser systems

    公开(公告)号:US10777959B2

    公开(公告)日:2020-09-15

    申请号:US15825677

    申请日:2017-11-29

    Abstract: This disclosure provides planar waveguides with enhanced support and/or cooling. One or more endcaps could be disposed between coating/cladding layers at one or more ends of a core region, where the core region is doped with at least one active ion species and each endcap is not doped with any active ion species that creates substantial absorption at pump and signal wavelengths. A core region could include at least one crystal or crystalline material, and at least one cladding layer could include at least one glass. Different types of coolers could be disposed on or adjacent to different coating/cladding layers. Side claddings could be disposed on opposite sides of a planar waveguide, where the opposite sides represent longer sides of the waveguide. Endcaps and one or more coolers could be sealed to a housing, and coolant can flow through a substantially linear passageway along a length of the waveguide. One side of a planar waveguide could be uncooled.

    Planar waveguides with enhanced support and/or cooling features for high-power laser systems

    公开(公告)号:US10069270B2

    公开(公告)日:2018-09-04

    申请号:US15041909

    申请日:2016-02-11

    Abstract: This disclosure provides planar waveguides with enhanced support and/or cooling. One or more endcaps could be disposed between coating/cladding layers at one or more ends of a core region, where the core region is doped with at least one active ion species and each endcap is not doped with any active ion species that creates substantial absorption at pump and signal wavelengths. A core region could include at least one crystal or crystalline material, and at least one cladding layer could include at least one glass. Different types of coolers could be disposed on or adjacent to different coating/cladding layers. Side claddings could be disposed on opposite sides of a planar waveguide, where the opposite sides represent longer sides of the waveguide. Endcaps and one or more coolers could be sealed to a housing, and coolant can flow through a substantially linear passageway along a length of the waveguide. One side of a planar waveguide could be uncooled.

    PLANAR WAVEGUIDES WITH ENHANCED SUPPORT AND/OR COOLING FEATURES FOR HIGH-POWER LASER SYSTEMS

    公开(公告)号:US20180090903A1

    公开(公告)日:2018-03-29

    申请号:US15825677

    申请日:2017-11-29

    Abstract: This disclosure provides planar waveguides with enhanced support and/or cooling. One or more endcaps could be disposed between coating/cladding layers at one or more ends of a core region, where the core region is doped with at least one active ion species and each endcap is not doped with any active ion species that creates substantial absorption at pump and signal wavelengths. A core region could include at least one crystal or crystalline material, and at least one cladding layer could include at least one glass. Different types of coolers could be disposed on or adjacent to different coating/cladding layers. Side claddings could be disposed on opposite sides of a planar waveguide, where the opposite sides represent longer sides of the waveguide. Endcaps and one or more coolers could be sealed to a housing, and coolant can flow through a substantially linear passageway along a length of the waveguide. One side of a planar waveguide could be uncooled.

    High-gain single planar waveguide (PWG) amplifier laser system

    公开(公告)号:US11211763B2

    公开(公告)日:2021-12-28

    申请号:US16254922

    申请日:2019-01-23

    Abstract: A system includes a master oscillator configured to generate a first optical beam and a beam controller configured to modify the first optical beam. The system also includes a PWG amplifier configured to receive the modified first optical beam and generate a second optical beam having a higher power than the first optical beam. The second optical beam has a power of at least about ten kilowatts. The PWG amplifier includes a single laser gain medium configured to generate the second optical beam. The system further includes a feedback loop configured to control the master oscillator, PWG amplifier, and beam controller. The feedback loop includes a laser controller. The laser controller may be configured to process wavefront information or power in bucket information associated with the second optical beam to control an adaptive optic or perform a back-propagation algorithm to provide wavefront correction at an output of the PWG amplifier.

Patent Agency Ranking