Abstract:
An ultrahigh molecular weight polymer, such as ultrahigh molecular weight polyisobutylene, is used as an additive to enhance the coating properties of a solvent. The polyisobutylene has a molecular weight of at least 2.5-3.0 million daltons, preferably greater than about 6 daltons, and is provided in a preferred concentration of 0.05 to 0.3%. The solvent can be a medicinal grade mineral oil. Other suitable solvents include hydrocarbon oil and low viscosity, synthetic compositions. In all cases, the coating properties of the solvent are greatly enhanced by the addition of ultrahigh molecular weight polyisobutylene. In another aspect of the invention, ultrahigh molecular weight polyisobutylene is used as an additive to enhance the viscoelasticity of a mineral oil based sunscreen formulation. In still another aspect of the invention, the fibers of a fabric material are coated with an ultrahigh molecular weight polymer to greatly strengthen the fabric. Other applications include improved automobile polishes and paint sealers, rust removers, and leather treatments.
Abstract:
Disclosed are compositions of ethylene and (meth)acrylic acid and ester elastomeric copolymers or of (meth)acrylic ester elastomeric copolymers with polylactones and certain polyethers.
Abstract:
The present invention relates to polymeric compositions for making a liquid impermeable, moisture vapour permeable layer by coating the composition onto a substrate. The polymeric compositions comprise preferred thermoplastic polymers and suitable hydrophilic plasticizers which are covalently bonded to said thermoplastic polymers. The layers made from the polymeric compositions of the present invention exhibit enhanced moisture vapour permeability and washability. These layers can find a variety of applications wherein moisture vapour permeability is desirable for example within waterproof garments, protective bedding covers, and within absorbent articles such as diapers, sanitary napkins, panty liners, incontinence products, protective clothing and the like.
Abstract:
Branched, substantially non-antigenic polymers are disclosed. Conjugates prepared with the polymers and biologically active molecules such as proteins and peptides demonstrate extended circulating life in vivo. Substantially fewer sites on the biologically active material are used as attachment sites. Methods of forming the polymer, conjugating the polymers with biologically active moieties and methods of using the conjugates are also disclosed.
Abstract:
The present invention is related to a shrinkage reducing agent for hydraulic materials which comprises at least one polymer selected from the group consisting of (a) a polymer having a structure derived from the residue of a compound containing 2 to 30 carbon atoms and one active hydrogen atom by the binding thereto of one oxyalkylene chain having a carboxyl-containing side chain, (b) a polymer having a structure derived from the residue of a compound containing 4 to 30 carbon atoms and two active hydrogen atoms by the binding thereto of at least one oxyalkylene chain having a carboxyl-containing side chain, (c) a polymer having a structure derived from the residue of a compound containing 1 to 30 carbon atoms and at least three active hydrogen atoms by the binding thereto of at least one oxyalkylene chain having a carboxyl-containing side chain and (d) a polymer having a structure derived from the residue of an amine by the binding thereto one oxyalkylene chain having a carboxyl-containing side chain.
Abstract:
There is disclosed a pneumatic tire having a rubberized component comprising: (a) 100 parts by weight of at least one rubber containing olefinic unsaturation; and (b) 1 to 50 phr of a dendrimer.
Abstract:
This invention relates to hydrolytically degradable gels of crosslinked poly(ethylene) glycol (PEG) structures. Addition of water causes these crosslinked structures to swell and become hydrogels. The hydrogels can be prepared by reacting two different PEG derivatives containing functional moieties at the chain ends that react with each other to form new covalent linkages between polymer chains. The PEG derivatives are chosen to provide covalent linkages within the crosslinked structure that are hydrolytically degradable. Hydrolytic degradation can provide for dissolution of the gel components and for controlled release of trapped molecules, including drugs. Reagents other than PEG can be avoided. The hydrolysis rates can be controlled by varying atoms adjacent to the hydrolytically degradable functional groups to provide substantially precise control for drug delivery in vivo.
Abstract:
A fiber composition which comprises a blend of modified polypropylene and modified poly(ethylene oxide). This fiber composition can be melt-processed to make fibers useful in flushable personal care products. A process for making this fiber composition is also provided.
Abstract:
In accordance with the foregoing, the present invention comprises a polyester epoxy resin powder coating exhibiting improved impact resistance and flexibility, without the loss of other key properties and where the 1,3-PDO modified polyester has lower melt viscosity than polyesters made with 100% neopentyl glycol, which is formed by reacting: a) A carboxyl functional polyester resin formed by reacting one or more aliphatic glycols and one or more polycarboxylic acids and/or anhydrides, wherein 5 to 90% (on a molar basis) of the aliphatic glycol is 1,3-propanediol, in the presence of an esterification catalyst and then endcapping the polyester with an endcapping agent to ensure that the polyester has carboxyl chain ends; and b) An epoxy resin crosslinking agent.
Abstract:
A tablet for producing a semiconductor device with substantially no bowing, comprising an epoxy resin composition comprising an epoxy resin and a curing agent, wherein the tablet has the characteristic of an amount reduced by heating being less than 0.05% by weight; a wafer with a resin layer and a semiconductor device produced by using the tablet; and a process for producing the wafer and the semiconductor device.