Abstract:
A multi-driving apparatus by a multi-level detection which pluralizes a voltage detection level in order to effectively operate voltage generators in the voltage generation circuit, minimizes a level fluctuation, reduces noise influenced on a total operation of the apparatus, increases a reliability of the apparatus, and reduces the power-consumption. The multi-driving apparatus includes: a level detection circuit block which receives a step-up voltage VPP or a back-bias voltage VBB as an input, and detects different level potentials; a control circuit block for controlling an operation of each generator according to a detected potential by the level detection circuit block; an oscillation circuit block which is oscillated by an enable signal being output from the control circuit block, and generates electric vibrations; and a generation circuit block which receives a control signal from the control circuit block as an input, and is comprised of a plurality of generators being driven by an oscillation output from the oscillation circuit block.
Abstract:
In one aspect, a bias circuit includes a rectifier, a negative bias level setter, and a negative bias extractor. The rectifier has a rectifier input and a rectifier output. The rectifier is configured to produce at the rectifier output a negative rectified voltage signal from an alternating input signal applied at the rectifier input. The negative bias level setter couples to the rectifier output and provides a path for current establishing the negative rectified voltage signal produced at the rectifier output. The negative bias extractor has an extractor output and an extractor input coupled to the rectifier output. The negative bias extractor is configured to produce at the extractor output a substantially constant negative bias signal from the negative rectified voltage signal produced at the rectifier output. In another aspect, a bias circuit includes a biasing output coupled between a positive voltage source and a negative voltage source, and a switching circuit coupled between the positive voltage source and the biasing output. The switching circuit is configured to define two or more different current paths through the switching circuit and thereby produce two or more respective biasing states at the biasing output.
Abstract:
A method of modulating cellular proliferation by the application of a thymidine phosphorylase to an organism. In a further aspect of the subject method, the thymidine phosphorylase is a conjugate which includes a targeting portion adapted to target the conjugate to a specific cell type or anatomical location. The thymidine phosphorylase has a thymidine phosphorylase activity of at least about 5%, preferably at least about 50% and, most preferably, at least about 90%, of the native E. coli enzyme.
Abstract:
A synchronous rectifier circuit (10) includes a polarity comparator (14) that generates a signal to a driver circuit (16) for controlling the voltage at the gate of a power MOSFET (60). The power MOSFET (60) is switched to operate in the conduction mode and short out a parasitic diode (62) when the diode is forward biased. The power MOSFET (60) is switched to operate in the nonconduction mode when the parasitic diode (62) is reverse biased. A bias supply circuit (12) uses a capacitor (70) to generate a regulated internal bias that provides power to the polarity comparator (14) and to the driver circuit (16). The internal bias allows the power MOSFET (60) to provide a current conduction that is substantially isolated from the changes in voltage levels at the terminals (64, 66) of the synchronous rectifier circuit (10).
Abstract:
A semiconductor device having a substrate potential generating circuit (800) is provided. The substrate potential generating circuit (800) can include a pump circuit (820), an oscillator circuit (801) and a substrate potential detector circuit (300). Substrate potential detector circuit (300) can include a voltage divider (301), differential amplifier (310), and a buffer circuit (320). Voltage divider (301) can provide a detect potential determined by the difference between an internally generated reference potential and a substrate potential. Differential amplifier (310) can receive the detect potential and a reference potential as differential inputs and may produce a substrate potential detect signal. The internally generated reference potential may be generated by a reference generator (900), that may include a reference device (918) and a compensation device (920). The internally generated reference potential may have reduced process and temperature dependency. Thus, a substrate potential can be accurately regulated.
Abstract:
A monolithic assembly includes vertical power semiconductor components formed throughout the thickness of a low doped semiconductive wafer of a first conductivity type, whose bottom surface is uniformly coated with a metallization. At least some of these components, so-called autonomous components, are formed in insulated sections of the substrate, whose lateral insulation is provided by a diffused wall of the second conductivity type and whose bottom is insulated through a dielectric layer interposed between the bottom surface of the substrate and the metallization.
Abstract:
A semiconductor integrated circuit includes a switch unit for controlling the supply of a power source voltage to a signal amplification circuit for receiving an input signal, and a control unit for selectively turning ON and OFF the switch unit in accordance with the amplitude or frequency of the input signal. By the constitution, it is possible to provide an input circuit or an output circuit capable of being applied to an input/output interface adapted for a small amplitude operation.
Abstract:
A method and apparatus for local and global power management in a programmable analog circuit. Specifically, the present invention describes an array of programmable analog blocks. Each block contains current mirror circuits that are coupled in parallel fashion. The mirror circuits function to increase current consumption in a corresponding operational amplifier more current when enabled. Global power management is achieved by increasing and decreasing the bias voltage that is applied to the array. Global configuration bits select the bias voltage value, including electrically disabling the bias voltage from the array of programmable analog blocks. Local power management is provided by enabling or disabling mirror circuits with local configuration bits to adjust the performance in an operational amplifier contained within a corresponding programmable analog block. A microcontroller controls the local and global management of power through the programmable analog block.
Abstract:
A low frequency oscillator is described. The low frequency oscillator has a bias circuit including a metal-oxide semiconductor (MOS) resistor. A biased ring oscillator is coupled to the bias circuit. The biased ring oscillator includes multiple current limiting transistors.
Abstract:
A system and method are disclosed which utilize an on-chip oscillator to provide the appropriate clock frequency for components of the chip to manage power consumption by the chip. More specifically, in a preferred embodiment of the present invention, an on-chip oscillator is utilized to provide the clock frequency for the chip's core circuitry, and such oscillator can dynamically adjust such clock frequency to manage the chip's power consumption. Thus, such on-chip oscillator generates the processor clock instead of the usual synchronous, externally controlled clock generator. A preferred embodiment of the present invention utilizes a voltage controlled frequency oscillator to control the chip's clock frequency in order to dynamically manage power consumption by the chip. Such oscillator is preferably operable to adjust its output frequency based on the voltage supplied to such oscillator to effectively manage the chip's power consumption.