Abstract:
Provided are elements for an ion implanter and an ion generating device including the same. The elements include a repeller, a cathode, a chamber wall, and a slit member constituting an arc chamber of an ion generating device for ion implantation used in the fabrication of a semiconductor device. A coating structure including a semicarbide layer is provided to each of the elements in order to stabilize the element against thermal deformation, protect the element from wear, and prevent a deposition product from being peeled off. The coating structure enables precise ion implantation without a change in the position of ion generation or distortion of the equipment. The coating structure allows electrons to be uniformly reflected into the arc chamber to increase the uniformity of plasma, resulting in an improvement in the dissociation efficiency of an ion source gas. The coating structure significantly improves the service life of the element compared to those of existing elements. Also provided are ion generating devices including the elements.
Abstract:
Provided are elements for an ion implanter and an ion generating device including the same. The elements include a repeller, a cathode, a chamber wall, and a slit member constituting an arc chamber of an ion generating device for ion implantation used in the fabrication of a semiconductor device. A coating structure including a semicarbide layer is provided to each of the elements in order to stabilize the element against thermal deformation, protect the element from wear, and prevent a deposition product from being peeled off. The coating structure enables precise ion implantation without a change in the position of ion generation or distortion of the equipment. The coating structure allows electrons to be uniformly reflected into the arc chamber to increase the uniformity of plasma, resulting in an improvement in the dissociation efficiency of an ion source gas. The coating structure significantly improves the service life of the element compared to those of existing elements. Also provided are ion generating devices including the elements.
Abstract:
A light bulb is provided has a lamp base electrically connecting a radiant light source and supporting the light source on a central axis. An envelope is supported from the base, comprising a generally tubular transmissive portion adjacent to the base and a generally reflective portion contiguous with the transmissive portion and completing enclosure of the light source. The reflective portion is in the form of a concave curve of revolution having a first focus at the light source and configured to direct the light from the source through the transmissive portion of the envelope at approximately a 45.degree. angle from the central axis, and wherein the 45.degree. angle is rotated to form a depending cone of light. A preferred embodiment has an envelope including a partially transmissive reflector and a tubular window as an optically transmissive light diffuser.
Abstract:
A thick-film circuit device having a substrate of insulating material containing alkali components, a first crossover made of non-alkali type glass and formed on the substrate, wiring conductors formed on the first crossover according to a predetermined circuit pattern, and a second crossover made of glass and formed on the first crossover so that it covers the wiring conductors, the first crossover preventing entry of sodium ions into the second crossover.
Abstract:
Disclosed is a new and useful discharge lamp for use in applications, such as tanning and technical lighting, and a method of making the same. The discharge lamp includes, inter alia, a vitreous tube having an axial length, a base phosphor coating applied on the interior of the tube along the entire axial length, and at least one phosphor over-coat applied over the base phosphor coating in one or more axial regions of the vitreous tube. The phosphor over-coat is applied to less than the total length of the vitreous tube. In a representative embodiment, the vitreous tube has an outer periphery which is smooth, but in alternate embodiments, a helical groove path is formed therein over at least a portion of the axial length.
Abstract:
In the field of wellbore data logging it is known to use isotopic neutron sources in a neutron capture logging technique. However, continuous isotopic sources are unpopular for regulatory and safety reasons. Attempts to employ neutron generator tubes to generate neutron bursts for use in the neutron capture technique have encountered various difficulties in areas connected with signal identification and processing. The disclosure relates to a method of data logging in which a low burst rate neutron generator tube is pulsed at comparatively low rates to generate neutron bursts that are captured in atomic nuclei in a proximal formation. The gamma radiation arising from the neutron capture is detected over a gating intervals defined by temporally distinct points. The gamma detector output is integrated over the gating interval to provide a measure of the decay rate that is independent of the pulse rate. Consequently the signal processing problems do not arise.
Abstract:
The electric lamp has a lamp vessel of which a wall portion is mirror-coated at its inner surface with an aluminum layer. This wall portion has a boundary near the largest diameter of the lamp vessel. This boundary is adjoined by a thermally connected zone having a transparent aluminum oxide layer. In the lamp, a dark zone caused by a very thin aluminum layer adjoining the boundary is avoided.
Abstract:
In an optical fiber sensor comprising an optical fiber coupled with a light emission element and another optical fiber coupled with a light receiving element, end portions of the optical fibers other than those coupled with the aforementioned elements being arranged side by side and joined together in a closely contacting relation with the end surfaces of the optical fibers placed in opposition to a slit member to be detected such that the arranged direction of the optical fibers is aligned with a shifting direction of the slit member; the end portions of the optical fibers are formed into a flat configuration and joined together such that the flat side surfaces of the two fibers are brought into a surface contacting relation.
Abstract:
In an electron tube, an atomic layer deposition method is used to form an electrical resistance film having a stacked structure of electrically insulating layers and electrically conductive layers or a mixed structure of an electrically insulating material and an electrically conductive material, so as to cover the whole of an inner wall surface and an outer wall surface of a second envelope. By use of the atomic layer deposition method, the firm and fine electrical resistance film with a desired resistance can be formed on an insulation surface, without containing a material such as a binder. When the electrical resistance film is provided with slight electrical conductivity, it can suppress occurrence of withstand voltage failure due to electrification of the insulation surface or the like and realize stability of withstand voltage characteristics.
Abstract:
An ion generation method uses a direct current discharge ion source provided with an arc chamber formed of a high melting point material, and includes: generating ions by causing molecules of a source gas to collide with thermoelectrons in the arc chamber and producing plasma discharge; and causing radicals generated in generating ions to react with a liner provided to cover an inner wall of the arc chamber at least partially. The liner is formed of a material more reactive to radicals generated as the source gas is dissociated than the material of the arc chamber.