Abstract:
In an electron tube, an atomic layer deposition method is used to form an electrical resistance film having a stacked structure of electrically insulating layers and electrically conductive layers or a mixed structure of an electrically insulating material and an electrically conductive material, so as to cover the whole of an inner wall surface and an outer wall surface of a second envelope. By use of the atomic layer deposition method, the firm and fine electrical resistance film with a desired resistance can be formed on an insulation surface, without containing a material such as a binder. When the electrical resistance film is provided with slight electrical conductivity, it can suppress occurrence of withstand voltage failure due to electrification of the insulation surface or the like and realize stability of withstand voltage characteristics.
Abstract:
A microchannel plate is provided with a substrate including a front surface, a rear surface, and a side surface, a plurality of channels penetrating from the front surface to the rear surface of the substrate, a first film provided on at least an inner wall surface of the channel, a second film provided on at least a part of the first film, and electrode layers provided on the front surface and the rear surface of the substrate. The first film is made of MgO, the second film is made of SiO2, and the second film is thinner than the first film.
Abstract:
A microchannel plate is provided with a substrate including a front surface, a rear surface, and a side surface, a plurality of channels penetrating from the front surface to the rear surface of the substrate, a first film provided on at least an inner wall surface of the channel, a second film provided on the first film, and electrode layers provided on the front surface and the rear surface of the substrate. The first film is made of Al2O3. The second film is made of SiO2. The first film is thicker than the second film.
Abstract:
In a micro-channel plate, an electron emission film and an ion barrier film formed on a substrate are integrally formed by the same film formation step. In this structure, the electron emission film and the ion barrier film are made as continuous and firm films and the ion barrier film can be made thinner. Since the ion barrier film is formed on the back side of an organic film, the organic film is exposed during removal of the organic film. This prevents the organic film from remaining and thus suppresses degradation of performance of the ion barrier film due to the residual organic film, so as to suppress ion feedback from the micro-channel plate and achieve a sufficient improvement in life characteristics of an image intensifier.
Abstract:
In an electron tube, an atomic layer deposition method is used to form an electrical resistance film having a stacked structure of electrically insulating layers and electrically conductive layers or a mixed structure of an electrically insulating material and an electrically conductive material, so as to cover the whole of an inner wall surface and an outer wall surface of a second envelope. By use of the atomic layer deposition method, the firm and fine electrical resistance film with a desired resistance can be formed on an insulation surface, without containing a material such as a binder. When the electrical resistance film is provided with slight electrical conductivity, it can suppress occurrence of withstand voltage failure due to electrification of the insulation surface or the like and realize stability of withstand voltage characteristics.
Abstract:
In a micro-channel plate, an electron emission film and an ion barrier film formed on a substrate are integrally formed by the same film formation step. In this structure, the electron emission film and the ion barrier film are made as continuous and firm films and the ion barrier film can be made thinner. Since the ion barrier film is formed on the back side of an organic film, the organic film is exposed during removal of the organic film. This prevents the organic film from remaining and thus suppresses degradation of performance of the ion barrier film due to the residual organic film, so as to suppress ion feedback from the micro-channel plate and achieve a sufficient improvement in life characteristics of an image intensifier.
Abstract:
In an electron tube, an electrical resistance film having a stacked structure of electrically insulating layers and electrically conductive layers is formed on holding surfaces of bases in insulating substrates. This electrical resistance film is made as a firm and fine film with a desired resistance by use of an atomic layer deposition method, which can suppress electrification of the bases comprised of an insulating material. This makes it feasible to stably maintain withstand voltage characteristics.
Abstract:
A transmissive photocathode includes a light transmitting substrate that has a first surface on which light is incident and a second surface which emits light incident from a side of the first surface, a photoelectric conversion layer that is provided on the second surface side of the light transmitting substrate and converts the light emitted from the second surface into photoelectrons, a light transmitting conductive layer that is provided between the light transmitting substrate and the photoelectric conversion layer and is composed of a single-layered graphene, and a thermal stress alleviation layer that is provided between the photoelectric conversion layer and the light transmitting conductive layer and has light transmissivity. A thermal expansion coefficient of the thermal stress alleviation layer is smaller than a thermal expansion coefficient of the photoelectric conversion layer and larger than a thermal expansion coefficient of the graphene.
Abstract:
A light-emitting device includes: a substrate having a groove extending in a first direction and a first surface and a second surface respectively arranged to sandwich the groove in a second direction; a first electrode provided on the first surface; a second electrode provided on the second surface; a graphite thin film provided on the first electrode and the second electrode and extending from the first electrode to the second electrode along the second direction in such a way as to be astride the groove; a third electrode provided on the graphite thin film in such a way as to be opposite the first electrode via the graphite thin film; and a fourth electrode provided on the graphite thin film in such a way as to be opposite the second electrode via the graphite thin film.
Abstract:
A light-emitting device according to one embodiment includes: a substrate; a graphite thin film disposed on the substrate; and an electrode provided on a second surface of the graphite thin film on an edge portion of the graphite thin film, the second surface of the graphite thin film being opposite from a first surface of the graphite thin film, the first surface of the graphite thin film opposed to the substrate. A plurality of protrusions for supporting the graphite thin film is formed on a surface of the substrate opposed to the graphite thin film, at least over an entire region where the substrate and a portion of the graphite thin film other than the edge portion overlap each other when viewed along a thickness direction of the substrate.