摘要:
Methods are described for differentiating stem and post-natal cells into sex hormone-producing cells that can be administered to a patient autologously or allogeneically in order to maintain in balance, or rebalance, their hypothalamic-pituitary-gonadal (HPG) axis.
摘要:
Maintenance of adult tissues depends on stem cell self-renewal in local niches. Spermatogonial stem cells (SSC) are germline adult stem cells necessary for spermatogenesis and fertility. The present invention relates utilization of testicular endothelial cells (TECs) in the SSC niche producing glial cell line-derived neurotrophic factor (GDNF) and other factors to support human and mammal SSCs in long-term culture. The present invention also relates to utilization of five factors sufficient for long-term maintenance of human and mammal SSC colonies in feeder-free cultures. Male cancer survivors after chemotherapy are often infertile since SSCs are highly susceptible to cytotoxic injury. Transplantation of TECs alone is used to restore spermatogenesis in mice after chemotherapy-induced depletion of SSCs.
摘要:
The invention relates to methods of increasing genetic merit of swine by establishing a plurality of mating subtypes for a line of swine, and determining a percentage of progeny that are male for each of the mating subtypes, or a percentage of progeny that are female for each of the mating subtypes, that would result, relative to a control, in an increase in genetic merit in the line; the invention further relates to sorting a sperm cell sample from a male swine in one of the mating subtypes into one or more subpopulations of sperm cells, wherein a majority of sperm cells in a subpopulation of sperm cells bear X chromosomes or Y chromosomes, and inseminating one or more female swine in the one of the mating subtypes with the subpopulation of sperm cells to achieve the percentage of progeny that are male, or the percentage of progeny that are female, determined to increase genetic merit relative to the control.
摘要:
The system comprises a straw and a liquid dilution medium. The straw comprises a tube (11) extending between a first end and a second end and comprises a gas-permeable, liquid-tight plug, said plug being arranged in the tube (11) in the vicinity of the first end of same and extending between a first end turned towards the first end of the tube (11) and a second end turned towards the second end of the tube (11). Said plug comprises an element (14) impregnated with a reagent (22) at least in the vicinity of a first end turned towards the second end of the tube (11). The liquid medium is provided to produce, by mixing, in predefined conditions, the liquid substance (21). The reagent (22) and the medium(27) are configured such that, when the substance (21) comes into contact with the first end of the impregnated element (14), it forms a hydrogel.
摘要:
The present disclosure relates to a composition of at least one predominantly positively charged polyelectrolyte polymer and at least one predominantly negatively charged polyelectrolyte polymer, a preferred composition comprises poly-L-lysine and a gellan gum, preferably a methacrylate gellan gum. The present subject-matter further relates to methods for generating composition of the present disclosure and to uses of a mixture according to the disclosure for biomedical applications such as cellular and acellular systems for tissue engineering and regenerative medicine applications or as drug delivery systems, for the treatment of several diseases namely diabetes mellitus.
摘要:
The invention describes methods and agents for improving cosmetic appearance, for promoting, improving or restoring health of cells and tissues, preferably skin, and more preferably, for restoring aged or damaged skin to a healthy appearance. In preferred embodiments, the methods and agents comprise active extracts produced from fish eggs. The invention further provides processes for making active fish egg extracts.
摘要:
The invention relates to methods of increasing genetic merit of swine by establishing a plurality of mating subtypes for a line of swine, and determining a percentage of progeny that are male for each of the mating subtypes, or a percentage of progeny that are female for each of the mating subtypes, that would result, relative to a control, in an increase in genetic merit in the line; the invention further relates to sorting a sperm cell sample from a male swine in one of the mating subtypes into one or more subpopulations of sperm cells, wherein a majority of sperm cells in a subpopulation of sperm cells bear X chromosomes or Y chromosomes, and inseminating one or more female swine in the one of the mating subtypes with the subpopulation of sperm cells to achieve the percentage of progeny that are male, or the percentage of progeny that are female, determined to increase genetic merit relative to the control.
摘要:
The present disclosure relates to luterial, which is a mitochondrial-like unidentified nano-sized particle derived from a body fluid, and to a method for isolating the same.
摘要:
Methods are provided for the generation of male germ cells from somatic cells. Included are methods of non-integrative reprogramming for germ cell differentiation with a reduced risk of neoplasia during in vivo differentiation by the inclusion of VASA with the reprogramming factors. Also included are methods of generating male germ cells from reprogrammed pluripotent cells by direct injection of the reprogrammed cells into the seminiferous tubules. In some embodiments the somatic cells are derived from a male with oligospermia or azoospermia, which may be the result of a genetic abnormality in Azoospermia Factor (AZF) region.
摘要:
This invention pertains to the discovery that stem cells (e.g., bone marrow stem cells) transplanted directly into a testicular environment are transdifferentiated into bona fide Sertoli cells, and/or Leydig cells, and/or and germ cells. This provides a mechanism for the treatment of male infertility and/or testosterone deficiency. Thus, in one embodiment, this invention provides a method of treating infertility or testosterone deficiency in a male mammal. The method typically involves implanting stem cells into the testes of the mammal whereby the stem cells differentiate into germ cells and/or Sertoli cells and/or Leydig cells thereby reducing infertility and/or testosterone deficiency.