Abstract:
Fast confocal spectral imagers are provided. A fast confocal spectral imager according to the invention includes a spectral imager coupled to a fast confocal microscope. A laser is provided for generating laser light, which passes through scanning optics which are configured to scan a line- or slit-shaped region of a specimen at a given time. The light then passes through an objective lens and excites fluorescent dyes applied to the specimen, causing the dyes to fluoresce at respective emission spectra. The fluorescence radiated by the excited dyes then passes back through the scanning optics and is directed to a fixed slit that functions as an entrance slit for a spectral imager. The spectral imager receives the fluorescence and separates it into wavelength bands. The wavelength and position across the slit-shaped region of the specimen for each wavelength band are then recorded.
Abstract:
Die Erfindung betrifft die Verhinderung von Falschlicht im Detektionsstrahlengang von Fluoreszenzmikroskopen. Dazu dient ein am oder in der Nähe des Reflektormoduls angebrachtes Absorptionsfilter 6, welches das vom Teilerspiegel 4 durchgelassene Anregungslicht 53 wirkungsvoll dämpft.
Abstract:
An optical fiber scanner is used for multiphoton excitation imaging, optical coherence tomography, or for confocal imaging in which transverse scans are carried out at a plurality of successively different depths within tissue. The optical fiber scanner is implemented as a scanning endoscope using a cantilevered optical fiber that is driven into resonance or near resonance by an actuator. The actuator is energized with drive signals that cause the optical fiber to scan in a desired pattern at successively different depths as the depth of the focal point is changed. Various techniques can be employed for depth focus tracking at a rate that is much slower than the transverse scanning carried out by the vibrating optical fiber. The optical fiber scanner can be used for confocal imaging, multiphoton fluorescence imaging, nonlinear harmonic generation imaging, or in an OCT system that includes a phase or frequency modulator and delay line.
Abstract:
Um Topographien auf Wafern oder Bauelementen zerstörungsfrei vermessen zu können, sieht die Erfindung ein Verfahren zur Vermessung dreidimensionaler topographischer Strukturen (22) auf Wafern (2) oder Bauelementen vor, bei welchem mit einem konfokalen Mikroskop (1) zumindest eine fluoreszierende topographische Struktur (22) mit Anregungslicht abgetastet und das aus dem Brennpunkt (17) in der Brennebene (19) des Objektivs (15) emittierte, durch das Anregungslicht angeregte Fluoreszenzlicht detektiert wird und Messdaten aus der Lage des Brennpunkts (17) und dem detektierten Fluoreszenzsignal gewonnen werden.
Abstract:
Die Erfindung betrifft ein Mikroskop, bei dem eine Schicht der Probe durch einen dünnen Lichtstreifen (11) beleuchtet wird und die Beobachtung (5) senkrecht zu der Ebene des Lichtstreifens erfolgt. Die Dicke des Lichtstreifens (11) bestimmt somit wesentlich die Schärfentiefe des Systems. Für die Bildaufnahme wird das Objekt (4) durch den bezüglich des Detektors (8) feststehenden Lichtstreifen (11) bewegt, und Fluoreszenz-oder/und Streulicht wird mit einem flächigen Detektor aufgenommen. Stark absorbierende oder stark streuende Objekte (4) werden aus mehreren Raumrichtungen beobachtet. Die dreidimensionalen Aufnahmen, die aus jeder Richtung gemacht werden, können nachträglich zu einer Aufnahme kombiniert werden, in der die Daten entsprechend ihrer Auflösung gewichtet werden. Die Auflösung der kombinierten Aufnahme wird dann durch die laterale Auflösung der einzelnen Aufnahmen dominiert.
Abstract:
A scanning confocal microscopy system and apparatus, especially useful for endoscopy with a flexible probe which is connected to the end of an optical fiber (9). The probe has a grating (12) and a lens (14) which delivers a beam of multi-spectral light having spectral components which extend in one dimension across a region of an object and which is moved to scan in another dimension. The reflected confocal spectrum is measured to provide an image of the region.
Abstract:
A scanning confocal microscopy system and apparatus, especially useful for endoscopy with a flexible probe which is connected to the end of an optical fiber (9). The probe has a grating (12) and a lens (14) which delivers a beam of multi-spectral light having spectral components which extend in one dimension across a region of an object and which is moved to scan in another dimension. The reflected confocal spectrum is measured to provide an image of the region.
Abstract:
Methods and apparatus for producing small, bright nanometric light sources from apertures that are smaller than the wavelength of the emitted light. Light is directed at a surface layer of metal onto a light barrier structure that includes one or more apertures each of which directs a small spot of light onto a target. The incident light excites surface plasmons (electron density fluctuations) in the top metal surface layer and this energy couples through the apertures to the opposing surface where it is emitted as light from the apertures of from the rims of the apertures. Means are employed to prevent or severely limit the extent to which surface plasmons are induced on the surface at the aperture exit, thereby constraining the resulting emissions to small target areas. The resulting small spot illunination may be used to increase the resolution of microscopes and photolithographic processes, increase the storage capacity and performance of optical data storage systems, and analyze the properties of small objects such as protein and nucleic acid molecules and single cells.