Abstract:
A sensor includes a first substrate and a second substrate. The first substrate includes a first side and an opposing second side, with the first side having a recess. The recess is defined by one or more side walls and a bottom wall. One or more of the side walls are substantially perpendicular to the bottom wall. A sensing diaphragm is defined between the second side of the first substrate and the bottom wall of the recess. A boss extends from the bottom wall of the recess. The second substrate may include a first side and an opposing second side, where the first side has a recess. The first side of the first substrate may be secured to the first side of the second substrate such that the recess in the first substrate faces and is in fluid communication with the recess in the second substrate.
Abstract:
A pressure sensor is provided, the sensor comprising an inlet for connecting to a body of gas; a diaphragm assembly comprising a first diaphragm and a second diaphragm, the first and second diaphragms defining a chamber therebetween, the chamber being connected to the inlet; a first transducer responsive to movement of the first diaphragm and operable to produce a first electrical signal in response to the same; and a second transducer responsive to movement of the second diaphragm and operable to produce a second electrical signal in response to the same; and an amplifier disposed in the chamber of the diaphragm assembly and connected to the first and second transducers to receive the first and second electrical signals therefrom. A movement sensor assembly for detecting movement of a person is also provided, the assembly comprising a flexible vessel containing a body of gas and a pressure sensor according to any preceding claim, the sensor being arranged to detect changes in the pressure of the gas within the flexible vessel.
Abstract:
In various embodiments, implantable drug-delivery devices feature drug reservoirs, expandable electrolysis chambers, and integrated strain gauges for monitoring pressure changes within the device.
Abstract:
The invention relates to a monitoring device and a method for determining operating health of a pressure medium operated device. The monitoring device (4) comprises means for processing input measuring data (3) relating to operation of the pressure medium operated device (1). An operating condition value (12) is determined in the monitoring device, where after the operating condition value is compared (13) to an input reference data (9) in order to determine current operating health (14). The reference data is determined by utilizing strength analysis (11), which is executed for a design model (10) of the associated pressure medium operated device.
Abstract:
In an embodiment, a method for calibrating a pressure sensor device is disclosed. The method involves determining the resonant frequency of a membrane of the pressure sensor device after the pressure sensor device has been attached to a circuit board, calculating a change in the resonant frequency from a resonant frequency stored in memory, calculating strain of the membrane of the pressure sensor device from the change in resonant frequency, and calibrating the pressure sensor device based on a capacitance-to-pressure curve calculated using the strain of the membrane of the pressure sensor device.
Abstract:
Es ist ein keramischer Drucksensor mit einer mit einem Druck (p, Δp) beaufschlagbaren, druckabhängig elastisch verformbaren Messmembran (1), einem keramischen Grundkörper (3), und einer einen äußeren Rand einer ersten Seite der Messmembran (1) unter Einschluss einer Druckkammer (5) mit einem äußeren Rand einer der Messmembran (1) zugewandte Stirnseite des Grundkörpers (3) verbindenden, energieeffizient herstellbaren Aktivhartlötung (7), sowie ein energieeffizient ausführbares Aktivhartlötverfahren beschrieben, der bzw. das sich dadurch auszeichnet, dass die Aktivhartlötung (7) mittels einer Anordnung erzeugt wird, in der auf den zu fügenden Fügeflächen (15, 17) jeweils ein reaktives Mehrschichtsystem (19, 19') angeordnet ist, und zwischen den beiden reaktiven Mehrschichtsystemen (19, 19') eine Lotschicht (21) aus einem Aktivhartlot angeordnet ist, und die Aktivhartlötung bei vorgeheizter Anordnung durch eine exotherme Reaktion der beiden Mehrschichtsysteme (19, 19') bewirkt wird, durch die an die reagierenden Mehrschichtsysteme (19, 19') angrenzendes Aktivhartlot aufgeschmolzen wird, und durch das jeweilige Mehrschichtsystem (19, 19') zur jeweils daran angrenzenden Fügefläche (15, 17) hindurch tritt.