Abstract:
Disclosed is an anti-fogging method including forming fine particles by pulverizing transparent crystals into a size of lO nm or less, manufacturing a crystal suspension by mixing the pulverized fine particles with washing water, introducing the crystal suspension into the pores by dipping an object including the glass, plastic or lens into the heated crystal suspension and then moving the object up and down or left and right, and taking the object out of the suspension to dry off the object.
Abstract:
There is provided a method of making a heat treated (HT) coated article to be used in shower door applications, window applications, or any other suitable applications where transparent coated articles are desired. For example, certain embodiments of this invention relate to a method of making a coated article including a step of heat treating a glass substrate coated with at least a layer of or including diamond-like carbon (DLC) and an overlying protective film (e.g., of or including zinc oxide) thereon. In certain example embodiments, the protective film may be ion beam treated with at least carbon ions. It has been found that the ion beam treatment improves the shelf-life of the product prior to HT. Following and/or during heat treatment (e.g., thermal tempering, or the like), the protective film may be removed.
Abstract:
There is provided a method of making a heat treated (HT) coated article to be used in shower door applications, window applications, or any other suitable applications where transparent coated articles are desired. The method may include heat treating a glass substrate coated with at least a layer of or including diamond-like carbon (DLC) or other type of carbon, with an oxygen barrier layer provided thereon directly or indirectly. Optionally, a release layer of a material such as zinc oxide or the like may be provided between the oxygen barrier layer and the DLC. In certain example embodiments, the oxygen content of at least part of the protective film when deposited may be determined based on whether the coated surface is to be bent in a convex manner, to be bent in a concave manner, or to remain flat. Following heat treatment, which may include bending the coated surface into a convex or concave shape, and quenching, the protective film may be removed by washing or the like.
Abstract:
L'invention a trait à un procédé de formation d'un film de polymère(s) sur des sites prédéterminés d'un substrat comprenant successivement: a) une étape de dépôt sur lesdits sites prédéterminés d'une goutte comprenant un solvant organique et le(s) polymère(s), lesdits sites étant mouillables vis-à-vis du solvant tandis que les zones entourant lesdits sites ne sont pas mouillables par ledit solvant; b) une étape de chauffage dudit substrat à une température efficace pour obtenir une évaporation dudit solvant. Application pour réaliser des matrices de sondes oligonucléotidiques, oligosaccharidiques.
Abstract:
Titanium and aluminum cathode targets are disclosed for sputtering absorbing coatings of titanium and aluminum-containing materials in atmospheres comprising inert gas, reactive gases such as nitrogen, oxygen, and mixtures thereof, which can further comprise inert gas, such as argon, to form nitrides, oxides, and oxynitrides, as well as metallic films. The titanium and aluminum-containing coatings can be utilized as an outer coat or as one or more coating layers of a coating stack.
Abstract:
Certain example embodiments of this invention relate to a photo catalytic coated article and a method of making the same. In certain example embodiments, a coated article includes a zirconium nitride and/or oxide inclusive layer before heat treatment (HT). The coated article is heat treated so that following heat treatment (e.g., thermal tempering) a zirconium oxide based layer is provided. A photocatalytic layer (e.g., of an oxide of titanium) maybe formed over zirconium oxide based layer following heat treatment.
Abstract:
The present invention in some embodiments provides sputter deposition techniques for applying thin film and thereafter applying over the sputtered film a temporary protective film. The thin film can optionally be applied by sputtering a target in a gaseous sputtering atmosphere containing an oxidizing gas and/or an inert gas. The invention in some embodiments relates to an insulating glazing unit or a monolithic pane having a thin film coating, deposited for example by sputtering, on at least one major surface, the thin film coating carrying a temporary protective film. The invention also provides embodiments involving high efficiency methods for producing such products.
Abstract:
Substrate (4) mit einer Beschichtung, insbesondere mit einer metallhaltigen Beschichtung, werden mit Hilfe von auf die beschichtete Seite des Substrats (4) gerichtetem Plasma bereichsweise, insbesondere im Randbereich (11) entschichtet. Die Breite des Bereiches (11), in dem entschichtet wird, kann erfindungsgemäss dadurch eingestellt werden, dass von mehreren in einer Reihe nebeneinander angeordneten plasmaköpfen (10) oder aus einem Plasmakopf mit veränderlichem Querschnitt Plasma in der gewünschten Breite des Entschichtens auf das Substrat gerichtet wird, wobei der oder die Plasmaköpfe (10) gegenüber dem Substrat (4) entsprechend ausgerichtet werden und/oder die jeweils benötigte Anzahl von Plasmaköpfen (10) in Betrieb genommen wird. Es ist auch eine nur teilweise Entfernung von Beschichtungen, über die Schichtdicke gesehen, möglich.
Abstract:
Zur Verbesserung der Hochfrequenzeigenschaften von Hochfrequenz-Substraten oder HochfrequenzLeiteranordnungen wird ein Glasmaterial zur Herstellung von Isolationsschichten für Hochfrequenz-Substrate oder Hochfrequenz Leiteranordnungen vorgeschlagen, welches als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 um bis 5 mm in zumindest einem Frequenzbereich to oberhalb von 1 GHz einen Verlustfaktor tan8 kleiner oder gleich 70*10- 4 aufweist.