Abstract:
Mechanically fluidized systems and processes allow for efficient, cost-effective production of silicon coated particles having very low levels of contaminants such as metals and oxygen. These silicon coated particles are produced, conveyed, and formed into crystals in an environment maintained at a low oxygen level or a very low oxygen level and a low contaminant level or very low contaminant level to minimize the formation of silicon oxides and minimize the deposition of contaminants on the coated particles. Such high purity coated silicon particles may not require classification and may be used in whole or in part in the crystal production method. The crystal production method and the resultant high quality of the silicon boules produced are improved by the reduction or elimination of the silicon oxide layer and contaminants on the coated particles.
Abstract:
An integral gas chromatograph / mass spectrometer system is assembled by attaching a gas chromatograph assembly on one side and a mass spectrometer assembly on the other side of a master flange. The gas chromatograph assembly is accurately positioned on a holder board integrally connected to the master flange. The mass spectrometry assembly is accurately positioned on a base plate that is integrally connected to the master flange.
Abstract:
Methods and devices for controlling the oxidation rate of a hydrocarbon to an acid by adjusting addition of a rate-modulator are disclosed. In order to control oxidation rate, the ratio of hydrocarbon to rate-modulator is appropriately adjusted. Preferably, this ratio is adjusted continually based on feedback relative to oxidation progress parameters. It may be kept substantially constant at steady state conditions of the oxidation, or it may take a path of predetermined values. The rate-modulator preferably comprises a hydrocarbon oxidation initiator.
Abstract:
Mechanically fluidized systems and processes allow for efficient, cost-effective production of silicon. Particulate may be provided to a heated tray or pan, which is oscillated or vibrated to provide a reaction surface. The particulate migrates downward in the tray or pan and the reactant product migrates upward in the tray or pan as the reactant product reaches a desired state. Exhausted gases may be recycled.
Abstract:
Mechanically fluidized systems and processes allow for efficient, cost-effective production of silicon. Particulate may be provided to a heated tray or pan, which is oscillated or vibrated to provide a reaction surface. The particulate migrates downward in the tray or pan and the reactant product migrates upward in the tray or pan as the reactant product reaches a desired state. Exhausted gases may be recycled.
Abstract:
Systems and processes are provided for efficient, cost-effective production of silicon by chemical vapor deposition. Reaction byproducts are recycled for use within the systems and processes without recovery and external processing of the byproducts. The systems and processes provide savings in both capital and operating costs.
Abstract:
Mechanically fluidized systems and processes allow for efficient, cost-effective production of silicon. Particulate may be provided to a heated tray or pan, which is oscillated or vibrated to provide a reaction surface. The particulate migrates downward in the tray or pan and the reactant product migrates upward in the tray or pan as the reactant product reaches a desired state. Exhausted gases may be recycled.
Abstract:
Devices and methods are presented in which heat transfer from the surface of a high-temperature exothermic reaction mass is removed while largely maintaining the temperature of the mass at a desired level by allowing heat to radiate from the surface of the reaction mass to a first absorber that forms part of a reactor vessel, from which the heat is then removed using a second absorber.
Abstract:
This invention relates to methods and reactor devices for controlling the oxidation of hydrocarbons to dibasic acids in the presence of a catalyst and a monobasic acid, by removing the catalyst from the reaction mixture, outside the oxidation zone, after the oxidation has taken place at least partially. Initially, the catalyst is partially precipitated and removed by reducing the water level in the reaction mixture and/or subjecting the reaction mixture to a temperature at which or over which catalyst precipitates. After the initial partial precipitation of the catalyst, the mother liquor remaining is subjected to a thermal treatment during which at least the major part of the monobasic acid is removed leaving behind molten dibasic acids, in which the remaining catalyst precipitates substantially in its totality, and it is removed. The precipitated catalyst in the two precipitation stages may be recycled in miscellaneous ways.
Abstract:
Mechanically fluidized systems and processes allow for efficient, cost-effective production of silicon. Particulate may be provided to a heated tray or pan, which is oscillated or vibrated to provide a reaction surface. The particulate migrates downward in the tray or pan and the reactant product migrates upward in the tray or pan as the reactant product reaches a desired state. Exhausted gases may be recycled.