Abstract:
Described herein is a degradable linking agent that includes a core molecule with one or more charged groups; and one or more photoreactive groups covalently attached to the core molecule by one or more degradable linkers.
Abstract:
Described herein is a degradable linking agent of formula Photo 1 -LG-Photo 2 , wherein Photo 1 and Photo 2 independently represent at least one photoreactive group and LG represents a linking group comprising one or more silicon atoms or one or more phosphorous atoms. The degradable linking agent includes a covalent linkage between at least one photoreactive group and the linking group, wherein the covalent linkage between at least one photoreactive group and the linking group is interrupted by at least one heteroatom. A method for coating a support surface with the degradable linking agent, coated support surfaces and medical devices are also described.
Abstract:
Described herein is a degradable linking agent that includes a core molecule with one or more charged groups; and one or more photoreactive groups covalently attached to the core molecule by one or more degradable linkers.
Abstract:
Hydrophobic α(1→4)glucopyranose polymers with enhanced degradation properties are described. Between the α(1→4)glucopyranose polymeric portion and the hydrophobic portion exists a linker portion having a silyl ether chemistry that facilitates degradation of the polymer. Biodegradable matrices can be formed from these polymers, and the matrices can be used for the preparation of implantable and injectable medical devices wherein the matrix is capable of degrading in vivo at an increased rate. Matrices including and capable of releasing a bioactive agent in vivo are also described.
Abstract:
Embodiments of the invention include linking agents including photo groups and vinyl groups and coatings and devices that incorporate such linking agents, along with related methods. Exemplary methods herein include methods of priming substrates and methods of coating substrates using compounds having the formula R 1 - X - R 2 , wherein R 1 is a radical comprising a vinyl group, X is a radical comprising from about one to about twenty carbon atoms, and R 2 is a radical comprising a photoreactive group. Embodiments herein also include linking agents having the formula R 1 - X - R 2 , wherein R 1 is a radical comprising a vinyl group, X is a radical comprising from about one to about twenty carbon atoms, and R 2 is a radical comprising a photoreactive group. Other embodiments are also included herein.
Abstract:
Silane-functionalized hydrophilic polymers and polymeric matrices are described. Hydrophilic matrices can be formed from the polymers, and can be used in association with the preparation of implantable and injectable medical devices. Exemplary devices include those having a durable lubricious coating formed from the hydrophilic polymers.
Abstract:
Silane-functionalized hydrophobic a(1→4)glucopyranose polymers and polymeric matrices are described. Biodegradable matrices can be formed from hydrophobic a(1→4)glucopyranose polymers with reactive pendent silyl ether groups. Reaction of the silyl ether groups provides improved matrix formation through bonding to a device surface of a device, polymer-polymer crosslinking, or both. Biodegradable matrices can be used for the preparation of implantable and injectable medical devices, including those that release a bioactive agent.
Abstract:
Bioerodable poly(etheresteramides) and matrices formed therefrom, such as medical device coatings, are described. The matrices show desirable erosion properties desirable for therapeutic use. The matrices can include a bioactive agent which can be used to treat medical conditions.
Abstract:
The invention is directed to medical device coatings, such as coated guidewires and catheters, containing a visualization moiety providing color to the coating in ambient or applied light. The coating allows for visual or machine inspection of coating properties such as uniformity of coverage. In some embodiments the coatings include the visualization moiety and an activated UV photogroup, which is used to provide covalent bonding in the coating. The visualization moiety can be in particulate form and entrained in the coating, or can be covalently bonded to the hydrophilic polymer backbone. In other embodiments the visualization moiety includes a stilbene chemical group. Exemplary coatings include a hydrophilic vinyl pyrrolidone polymer, which can provide lubricity to the device surface, along with the colored properties.
Abstract:
Embodiments of the invention include linking agents including photo groups and vinyl groups and coatings and devices that incorporate such linking agents, along with related methods. Exemplary methods herein include methods of priming substrates and methods of coating substrates using compounds having the formula R1 - X - R2, wherein R1 is a radical comprising a vinyl group, X is a radical comprising from about one to about twenty carbon atoms, and R2 is a radical comprising a photoreactive group. Embodiments herein also include linking agents having the formula R1 - X - R2, wherein R1 is a radical comprising a vinyl group, X is a radical comprising from about one to about twenty carbon atoms, and R2 is a radical comprising a photoreactive group. Other embodiments are also included herein.