Abstract:
A modular plasma source assembly for use with a processing chamber is described. The assembly includes an RF hot electrode with an end dielectric and a sliding ground connection positioned adjacent the sides of the electrode. A seal foil connects the sliding ground connection to the housing to provide a grounded sliding ground connection separated from the hot electrode by the end dielectric. A coaxial feed line passes through a conduit into the RF hot electrode isolated from the processing environment so that the coaxial RF feed line is at atmospheric pressure while the plasma processing region is at reduced pressure.
Abstract:
Methods are disclosed of determining a fill level of a precursor in a bubbler. The bubbler is fluidicly coupled with a substrate processing chamber through a vapor-delivery system. The bubbler and vapor-delivery system are backfilled with a known dose of a backfill gas. A pressure and temperature of the backfill gas are determined, permitting a total volume for the backfill gas in the bubbler and vapor-delivery system to be determined by application of a gas law. The fill level of the precursor in the bubbler is determined as a difference between (1) a total volume of the bubbler and vapor-delivery system and (2) the determined total volume for the backfill gas.
Abstract:
Provided are assemblies comprising an elongate enclosure comprising a material resistant to thermal expansion at temperatures experienced in a processing chamber. At least one heating element extends along a longitudinal axis of the elongate enclosure through an open interior region allowing a flow of gases to pass the heating element in a direction substantially perpendicular to the longitudinal axis. Methods of processing substrates using a heating element to excite gaseous precursor species are also described.
Abstract:
Embodiments of the present invention provide a method of forming an electrical connection on a device. In one embodiment, the electrical connection is attached to the device via an adhesive having electrically conductive particles disposed therein. In one embodiment, the adhesive is cured while applying pressure such that the conductive particles align, have a reduced particle-to-particle spacing, or come into contact with each other to provide a more directly conductive (less resistive) path between the electrical connection and the device. In one embodiment of the present invention, a method for forming an electrical lead on a partially formed solar cell during formation of the solar cell device is provided. The method comprises placing a side-buss wire onto a pattern of electrically conductive adhesive disposed on a back contact layer of a solar cell device substrate, laminating the side-buss wire and electrically conductive adhesive between the solar cell device substrate and a back glass substrate to form a composite solar cell structure, and curing the electrically conductive adhesive while applying pressure and heat to the composite solar cell structure.
Abstract:
A gaseous mixture is deposited onto a substrate surface using a showerhead. A first plenum of the showerhead has a plurality of channels fluidicly coupled with an interior of a processing chamber. A second plenum gas flows through a plurality of tubes extending from a second plenum of the showerhead through the channels into the interior of the processing chamber. The diameter of the tubes is smaller than the diameter of the channels such that a first plenum gas flows into the interior of the processing chamber through a space defined between the outer surface of the tubes and the surface of the channels. The length and diameter of the tubes determine the level of distribution and the molar ratio of the first gas and the second gas in the gaseous mixture that is deposited on the surface of the substrate.
Abstract:
Described are apparatus and methods for processing a plurality of semiconductor wafers on a susceptor assembly so that the temperature across the susceptor assembly is uniform. A plurality of linear lamps are positioned and controlled in zones to provide uniform heating.
Abstract:
Provided are gas distribution plates for atomic layer deposition apparatus including a hot wire or hot wire unit which can be heated to excite gaseous species while processing a substrate. Methods of processing substrates using a hot wire to excite gaseous precursor species are also described.
Abstract:
Provided are atomic layer deposition apparatus and methods including a gas distribution plate comprising at least one gas injector unit. Each gas injector unit comprises a plurality of elongate gas injectors including at least two first reactive gas injectors and at least one second reactive gas injector, the at least two first reactive gas injectors surrounding the at least one second reactive gas injector. Also provided are atomic layer deposition apparatuses and methods including a gas distribution plate with a plurality of gas injector units.
Abstract:
A gaseous mixture is deposited onto a substrate (135) surface using a showerhead (130). A first plenum (210) of the showerhead has a plurality of channels (235) fluidicly coupled with an interior of a processing chamber (105) A second plenum gas flows through a plurality of tubes (240) extending from a second plenum (215) of the showerhead through the channels (235) into the interior of the processing chamber. The diameter of the tubes is smaller than the diameter of the channels such that a first plenum gas flows into the interior of the processing chamber through a space defined between the outer surface of the tubes and the surface of the channels. The length and diameter of the tubes determine the level of distribution and the molar ratio of the first gas and the second gas in the gaseous mixture that is deposited on the surface of the substrate.
Abstract:
Provided are atomic layer deposition apparatus and methods including a gas distribution plate comprising a plurality of elongate gas ports including at least one first reactive gas port in fluid communication with a first reactive gas and at least one second reactive gas port in fluid communication with a gas manifold. The gas manifold is in fluid communication with at least a second reactive gas different from the first reactive gas and a purge gas. Also provided are atomic layer deposition apparatus and methods including linear energy sources in one or more of region before the gas distribution plate and a region after the gas distribution plate.