Abstract:
The present invention provides a production method for a nitride semiconductor light emitting device, which warps less after removing the substrate, and which can emit light from the side thereof; specifically, the present invention provides a production method for a nitride semiconductor light emitting device comprising: forming stacked layers by stacking at least an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer on a substrate in this order; forming grooves which divide the stacked layers so as to correspond to nitride semiconductor light emitting devices to be produced; filling the grooves with a sacrifice layer; and forming a plate layer on the p-type semiconductor layer and the sacrifice layer by plating.
Abstract:
The present invention provides a magnetic recording medium having superior startup operation and durability as well as satisfactory surface lubricity. The present invention relates to a production process of a magnetic recording medium in which at least a magnetic layer, a protective film layer and a lubricant layer are sequentially laminated on a non-magnetic substrate, wherein the protective film layer is surface treated using a gas activated by plasma generated at a pressure in the vicinity of atmospheric pressure. The present invention also relates to a magnetic recording medium produced according to the aforementioned production process.
Abstract:
A magnetic recording medium includes an orientation adjusting layer, a nonmagnetic under layer, a nonmagnetic intermediate layer, a magnetic layer and a protective layer sequentially stacked on a nonmagnetic substrate provided on a first surface thereof with a texture streak and used for a magnetic disc. The nonmagnetic under layer contains at least a layer formed of a Cr-Mn-based alloy and possesses magnetic anisotropy having an axis of easy magnetization in a circumferential direction thereof. A magnetic recording and reproducing device includes the magnetic recording medium and a magnetic head for enabling information to be recorded in and reproduced from the magnetic recording medium.
Abstract:
The present invention provides a production method for a nitride semiconductor light emitting device, which warps less after removing the substrate, and which can emit light from the side thereof; specifically, the present invention provides a production method for a nitride semiconductor light emitting device comprising: forming stacked layers by stacking at least an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer on a substrate in this order; forming grooves which divide the stacked layers so as to correspond to nitride semiconductor light emitting devices to be produced; filling the grooves with a sacrifice layer; and forming a plate layer on the p-type semiconductor layer and the sacrifice layer by plating.
Abstract:
The present invention is a production method for a magnetic recording media in which at least a magnetic layer, a protective layer, and a lubricnat layer are sequentially layered onto a non-magnetic substrate 1, and non-magnetic substrate 1 is surface treated using a gas activated by plasma generated at around atmospheric pressure. As a result of the present invention, it is possible to produce magnetic recording media with good yield that have few errors and superior head floating properties, by effectively removing foreign material and projections present on the surface of the magnetic recording media.
Abstract:
The object of the present invention is to provide a magnetic recording medium which can enhance magnetic anisotropy and has excellent magnetic characteristics amd read-write performance; a method for producing the magnetic recording medium; and a magnetic recording and reproducing apparatus. In order to achieve the object, the present invention provides a magnetic recording medium including at least a non-magnetic undercoat layer 2, a magnetic layer 5, and a protective layer 6, in this order, on a non-magnetic substrate 1, wherein the non-magnetic undercoat layer 2 contains an Mo-P based alloy.
Abstract:
The present invention provides a magnetic recording medium having superior startup operation and durability as well as satisfactory surface lubricity. The present invention relates to a method of manufacturing a magnetic recording medium in which at least a magnetic layer, a protective film layer and a lubricant layer are sequentially laminated on a non-magnetic substrate, wherein the lubricant layer is surface treated using a gas activated by plasma generated at a pressure in the vicinity of atmospheric pressure. The present invention also relates to a magnetic recording medium produced according to the aforementioned manufacturing method.
Abstract:
A GaN-based semiconductor light-emitting device 1 includes a stacked body 1OA having the component layers 12 that include an n-type semiconductor layer, a light- emitting layer and a p-type semiconductor layer each formed of a GaN-based semiconductor, sequentially stacked and provided as an uppermost layer with a first bonding layer 14 made of metal and a second bonding layer 33 formed on an electroconductive substrate 31, adapted to have bonded to the first bonding layer 14 the surface thereof lying opposite the side on which the electroconductive substrate 31 is formed, made of a metal of the same crystal structure as the first bonding layer 14, and allowed to exhibit an identical crystal orientation in the perpendicular direction of the bonding surface and the in-plane direction of the bonding surface.
Abstract:
The present invention provides a magnetic recording medium having superior startup operation and durability as well as satisfactory surface lubricity. The present invention relates to a method of manufacturing a magnetic recording medium in which at least a magnetic layer, a protective film layer and a lubricant layer are sequentially laminated on a non-magnetic substrate, wherein the lubricant layer is surface treated using a gas activated by plasma generated at a pressure in the vicinity of atmospheric pressure. The present invention also relates to a magnetic recording medium produced according to the aforementioned manufacturing method.
Abstract:
In a magnetic recording medium which is able to cope with a higher recording density, there is provided a magnetic recording medium which has a higher coercive force and a lower noise, a production method thereof, and a magnetic recording and reproducing apparatus. The magnetic recording medium is characterized in that at least a nonmagnetic undercoat layer, a nonmagnetic intermediate layer, a magnetic layer, and a protective layer are laminated in this order on a nonmagnetic substrate, and at least one of the layers of the nonmagnetic undercoat layer is constituted by a WV type multicomponent body-centered cubic crystal alloy.