Abstract:
A memory system includes a plurality of non-volatile storage elements that each comprise a diode (or other steering device) in series with reversible resistance-switching material. One or more circuits in the memory system program the non-volatile storage elements by changing the reversible resistance-switching material of one or more non-volatile storage elements to a first resistance state. The memory system can also change the reversible resistance-switching material of one or more of the non-volatile storage elements from the first resistance state to a second resistance state by applying one or more pairs of opposite polarity voltage conditions (e.g., pulses) to the respective diodes (or other steering devices) such that current flows in the diodes (or other steering devices) without operating the diodes (or other steering devices) in breakdown condition.
Abstract:
Disclosed herein are techniques for fabricating a 3D stacked memory device having word line (WL) select gates (229). The bodies (231) of the WL select gates may be formed from the same material (e.g., highly doped polysilicon) that the word lines are formed of. Desired doping profiles in a body of a WL select gate may be achieved by various techniques such as counter-doping. The WL select gates may include TFTs that are formed by etching holes in the layer in which word lines are formed. Gate electrodes (404) and gate dielectrics (402) may be formed in the holes. Bodies may be formed in the polysilicon outside of the holes.
Abstract:
Disclosed herein are 3D stacked memory devices having WL select gates (229). The 3D stacked memory device could have NAND strings. The WL select gates may be located adjacent to a word line hookup area (301) of a word line plate. The word line plate may be driven by a word line plate driver and may have many word lines. The WL select gates may select individual word lines or groups of word lines. Therefore, smaller units that the entire block may be selected. This may reduce capacitive loading. The WL select gates may include thin film transistors (231, 402, 404). 3D decoding may be provided in a 3D stacked memory device using the WL select gates.
Abstract:
A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME) in series with a steering element. The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The first and second resistance-switching layers can both have a bipolar or unipolar switching characteristic. In a set or reset operation of the memory cell, an ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element. Particular materials and combinations of materials for the different layers of the RSME are provided.
Abstract:
Disclosed herein are thin film transistors (TFTs) and techniques for fabricating TFTs. A major plane of the gate electrode of the TFT may be vertically oriented with respect to a horizontal layer of polysilicon in which the TFT resides. An interface between the gate electrode and gate dielectric may be vertically oriented with respect to a horizontal layer of polysilicon in which the TFT resides. The TFT may have a channel width that is defined by a thickness of the horizontal layer of polysilicon. The TFT may be formed by etching a hole in a layer of polysilicon. Then, a gate electrode and gate dielectric may be formed in the hole by depositing layers of dielectric and conductor material on the sidewall. The body may be formed in the horizontal layer of polysilicon outside the hole.
Abstract:
Passive devices such as resistors and capacitors are provided for a 3D non-volatile memory device. In a peripheral area of a substrate, a passive device includes alternating layers of a dielectric (L0, L2,...,L12) such as oxide and a conductive material (L1, L3,...,L13) such as heavily doped polysilicon or metal silicide in a stack. The substrate includes one or more lower metal layers (M1) connected to circuitry. One or more upper metal layers (DO) are provided above the stack. Contact structures (2802...2814) extend from the layers of conductive material to portions of the one or more upper metal layers so that the layers of conductive material are connected to one another in parallel, for a capacitor, or serially, for a resistor, by the contact structures and the at least one upper metal layer. Additional contact structures (2906, 2908) can connect the circuitry to the one or more upper metal layers.
Abstract:
A memory system includes a plurality of non-volatile storage elements that each comprise a diode (or other steering device) in series with reversible resistance-switching material. One or more circuits in the memory system program the non-volatile storage elements by changing the reversible resistance-switching material of one or more non-volatile storage elements to a first resistance state. The memory system can also change the reversible resistance-switching material of one or more of the non-volatile storage elements from the first resistance state to a second resistance state by applying one or more pairs of opposite polarity voltage conditions (e.g., pulses) to the respective diodes (or other steering devices) such that current flows in the diodes (or other steering devices) without operating the diodes (or other steering devices) in breakdown condition.
Abstract:
A stacked non-volatile memory cell array include cell areas (CA3,4) with rows of vertical columns of NAND cells, and an interconnect area (IA1), e.g., midway in the array and extending a length of the array. The interconnect area includes at least one metal silicide interconnect (I1, I2) extending between insulation-filled slits (S5, S6, S7), and does not include vertical columns of NAND cells. The metal silicide interconnect can route power and control signals from below the stack to above the stack. The metal silicide interconnect can also be formed in a peripheral region of the substrate. Contact structures can extend from a terraced portion of the interconnect to at least one upper metal layer, above the stack, to complete a conductive path from circuitry below the stack to the upper metal layer. Subarrays can be provided in a plane of the array without word line hook-up and transfer areas between the subarrays.
Abstract:
A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME) in series with a steering element. The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The first and second resistance-switching layers can both have a bipolar or unipolar switching characteristic. In a set or reset operation of the memory cell, an ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element. Particular materials and combinations of materials for the different layers of the RSME are provided.
Abstract:
A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME) in series with a steering element. The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The first and second resistance-switching layers can both have a bipolar or unipolar switching characteristic. In a set or reset operation of the memory cell, an ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element. Particular materials and combinations of materials for the different layers of the RSME are provided.