摘要:
A layer stack including an alternating stack of insulating layers and sacrificial material layers is formed over a substrate. After formation of memory stack structures, backside trenches are formed through the layer stack. The sacrificial material layers are replaced with electrically conductive layers. Drain select level dielectric isolation structures are formed through drain select level of the stack after formation of the electrically conductive layers. The drain select level dielectric isolation structures laterally separate portions of conductive layers that are employed as drain select level gate electrodes for the memory stack structures.
摘要:
A three-dimensional non-volatile memory comprises a plurality of word line layers arranged alternatingly with a plurality of dielectric layers in a stack over a substrate. Higher word lines are implemented to be thicker than lower word lines in order to reduce variation in resistance among word lines.
摘要:
A semiconductor structure includes a memory-level assembly located over a substrate and including at least one alternating stack and memory stack structures vertically extending through the at least one alternating stack. Each of the at least one an alternating stack includes alternating layers of respective insulating layers and respective electrically conductive layers, and each of the electrically conductive layers in the at least one alternating stack includes a respective opening such that a periphery of a respective spacer dielectric portion located in the opening contacts a sidewall of the respective electrically conductive layers. At least one through-memory-level via structure vertically extends through each of the spacer dielectric portions and the insulating layers.
摘要:
A method of forming a monolithic three-dimensional memory device includes forming a first alternating stack over a substrate, forming an insulating cap layer, forming a first memory opening through the insulating cap layer and the first alternating stack, forming a sacrificial pillar structure in the first memory opening, forming a second alternating stack, forming a second memory opening, forming an inter-stack memory opening, forming a memory film and a first semiconductor channel layer in the inter-stack memory opening, anisotropically etching a horizontal bottom portion of the memory film and the first semiconductor channel layer to expose the substrate at the bottom of the inter-stack memory opening such that damage to portions of the first semiconductor channel layer and the memory film located adjacent to the insulating cap layer is reduced or avoided, and forming a second semiconductor channel layer in contact with the exposed substrate in the inter-stack memory opening.
摘要:
Split memory cells can be provided within an alternating stack of insulating layers and word lines. At least one lower-select-gate-level electrically conductive layers and/or at least one upper-select-level electrically conductive layers without a split memory cell configuration can be provided by limiting the levels of separator insulator structures within the levels of the word lines. At least one etch stop layer can be formed above at least one lower-select-gate-level spacer material layer. An alternating stack of insulating layers and spacer material layers is formed over the at least one etch stop layer. Separator insulator structures are formed through the alternating stack employing the etch stop layer as a stopping structure. Upper-select-level spacer material layers can be subsequently formed. The spacer material layers and the select level material layers are formed as, or replaced with, electrically conductive layers.
摘要:
An alternating stack of sacrificial material layers and insulating layers is formed over a substrate. Replacement of sacrificial material layers with electrically conductive layers can be performed employing a subset of openings. A predominant subset of the openings is employed to form memory stack structures therein. A minor subset of the openings is employed as access openings for introducing an etchant to remove the sacrificial material layers to form lateral recesses and to provide a reactant for depositing electrically conductive layers in the lateral recesses. By distributing the access openings across the entirety of the openings and eliminating the need to employ backside trenches for replacement of the sacrificial material layers, the size and lateral extent of backside trenches can be reduced to a level sufficient to accommodate only backside contact via structures.
摘要:
A three-dimensional memory device includes an alternating stack of electrically conductive layers and insulating layers located over a substrate, an array of memory stack structures. A source conductive line structure is provided between the substrate and the alternating stack. The source conductive line structure includes a plurality of parallel conductive rail structures extending along a same horizontal direction and adjoined to a common conductive straddling structure. Each memory stack structure straddles a vertical interface between a conductive rail structure and a support matrix. A semiconductor channel in each memory stack structure contacts a respective conductive rail structure and the support matrix.
摘要:
A method of fabricating a memory device is provided. The method includes forming a first alternating stack of insulator layers and spacer material layers over a semiconductor substrate, etching the first alternating stack to expose a single crystalline semiconductor material, forming a first epitaxial semiconductor pedestal on the single crystalline semiconductor material, such that the first epitaxial semiconductor pedestal is in epitaxial alignment with the single crystalline semiconductor material, forming an array of memory stack structures through the first alternating stack, and forming at least one semiconductor device over the first epitaxial semiconductor pedestal.
摘要:
An advanced metal-nitride-oxide-silicon (MNOS) multiple time programmable (MTP) memory is provided. In an example, an apparatus includes a two field effect transistor (2T field FET) metal-nitride-oxide-silicon (MNOS) MTP memory. The 2T field FET MNOS MTP memory can include an interlayer dielectric (ILD) oxide region that is formed on a well and separates respective gates of first and second transistors from the well. A control gate is located between the respective gates of the first and second transistors, and a silicon-nitride-oxide (SiN) region is located between a metal portion of the control gate and a portion of the ILD oxide region.