Abstract:
Embodiments of the invention generally relate to a grounding kit for a semiconductor processing chamber, and a semiconductor processing chamber having a grounding kit. More specifically, embodiments described herein relate to a grounding kit which creates an asymmetric grounding path selected to significantly reduce the asymmetries caused by an off center RF power delivery.
Abstract:
Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. The gate electrode stack includes a conductive film layer on a gate dielectric layer, a refractory metal nitride film layer on the conductive film layer, a silicon-containing film layer on the refractory metal nitride film layer, and a tungsten film layer on the silicon-containing film layer. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal nitride film layer on the conductive film layer, depositing a silicon-containing film layer on the refractory metal nitride film layer, and depositing a tungsten film layer on the silicon-containing film layer.
Abstract:
Methods and apparatus relating to aluminum nitride baffles are provided herein. In some embodiments, a baffle for use in semiconductor process chambers may include a body comprising aluminum nitride and a metal oxide binding agent, wherein a ratio of aluminum nitride to metal oxide on a surface of the body is greater than or equal to the ratio within the body. In some embodiments, the body may have a center stem and an outer annulus coupled to and extending radially outwards from a lower portion of the center stem. In some embodiments, a method of fabricating a baffle may include sintering aluminum, nitrogen, and a metal oxide binding agent to form a body of the baffle, the body having excess metal oxide binding agent disposed on a surface thereof; and removing a bulk of the excess metal oxide binding agent from a surface of the body.
Abstract:
Embodiments of process kits for substrate supports of semiconductor substrate process chambers are provided herein. In some embodiments, a process kit for a semiconductor process chamber may include an annular body being substantially horizontal and having an inner and an outer edge, and an upper and a lower surface; an inner lip disposed proximate the inner edge and extending vertically from the upper surface; and an outer lip disposed proximate the outer edge and on the lower surface, and having a shape conforming to a surface of the substrate support pedestal. In some embodiments, a process kit for a semiconductor process chamber my include an annular body having an inner and an outer edge, and having an upper and lower surface, the upper surface disposed at a downward angle of between about 5-65 degrees in a radially outward direction from the inner edge toward the outer edge.
Abstract:
An apparatus for An apparatus for generating excimer radiation is provided. The apparatus includes a housing having a housing wall. An electrode is configured within the housing. A tubular body is around the electrode. The tubular body includes an outer wall and an inner wall. At least one inert gas is between the outer wall and the inner wall, wherein the housing wall and the electrode are configured to excite the inert gas to illuminate an excimer light for curing.
Abstract:
Embodiments of the invention provide sputtering targets utilized in physical vapor deposition (PVD) and methods to form such sputtering targets. In one embodiment, a sputtering target contains a target layer disposed on a backing plate, and a protective coating layer - usually containing a nickel material - covering and protecting a region of the backing plate that would otherwise be exposed to plasma during the PVD processes. In many examples, the target layer contains a nickel-platinum alloy, the backing plate contains a copper alloy (e.g., copper-zinc), and the protective coating layer contains metallic nickel. The protective coating layer eliminates the formation of highly conductive, copper contaminants typically derived by plasma erosion of the copper alloy contained within the exposed surfaces of the backing plate. Therefore, the substrates and the interior surfaces of the PVD chamber remain free of such copper contaminants during the PVD processes.
Abstract:
Apparatus and methods for performing plasma processing on a wafer supported on a pedestal are provided. The apparatus can include a pedestal on which the wafer can be supported, a variable capacitor having a variable capacitance, a motor attached to the variable capacitor which varies the capacitance of the variable capacitor, a motor controller connected to the motor that causes the motor to rotate, and an output from the variable capacitor connected to the pedestal. A desired state of the variable capacitor is associated with a process recipe in a process controller. When the process recipe is executed the variable capacitor is placed in the desired state.
Abstract:
Embodiments of the invention generally relate to a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a kit. More specifically, embodiments described herein relate to a process kit including a cover ring, a shield, and an isolator for use in a physical deposition chamber. The components of the process kit work alone and in combination to significantly reduce particle generation and stray plasmas. In comparison with existing multiple part shields, which provide an extended RF return path contributing to RF harmonics causing stray plasma outside the process cavity, the components of the process kit reduce the RF return path thus providing improved plasma containment in the interior processing region.
Abstract:
Target assemblies and PVD chambers including target assemblies are disclosed. The target assembly includes a target that has a concave shaped target. When used in a PVD chamber, the concave target provides more radially uniform deposition on a substrate disposed in the sputtering chamber.
Abstract:
Target assemblies and PVD chambers including target assemblies are disclosed. The target assembly includes a target that has a concave shaped target. When used in a PVD chamber, the concave target provides more radially uniform deposition on a substrate disposed in the sputtering chamber.