Abstract:
Systems, apparatuses, and methods disclosed herein provide for receiving internal vehicle information, external static information, and external dynamic information; controlling the operation of one or more electronic accessories of the vehicle based on the received information; and managing a power supply for the one or more electronic accessories based on the energy usage and the operation of the electronic accessories.
Abstract:
Disclosed are various techniques to optimize mining operations efficiency in which the mine utilizes mine trucks over a mine route. One such technique includes optimizing engine speed from a speed and torque management system. Such engine speed changes can be determined using information such as road grade data and mine stop locations, or whether the engine is in a retarder mode. Mine operation efficiency can be improved through use of adjustments made to a load acceptance curve. Changes to the load acceptance curve can be made through use of information such as road grade data and target truck speed. Improvements can be made through dynamically adjusted vehicle speed, such as through average route speed adjustments, or route segment adjustments in light of average route speed. A dynamic torque management system can provide efficiencies as limits are applied to torque using look ahead information.
Abstract:
A system and method of utilizing a power boost feature is disclosed. The power boost feature enables the vehicle to produce a greater amount of power when needed, for example, to provide launch assist or overtake assist in a vehicle. A power boost request processor may receive information from a plurality of information systems of the vehicle, including, for example, vehicle mass, enablement of an accelerator pedal kick down switch, an amount of time passed between power boost system functions as communicated by a timer, operation and/or status of a cooling system, system enablement, transmission enablement, vehicle speed, position of an accelerator pedal, grade of the road as communicated by a road-grade sensor, actual vehicle power, actual available vehicle power, available battery power, look ahead information, powertrain health, route information, existence of emission zones, weather, and advanced driver-assistance systems.
Abstract:
Disclosed are various techniques to optimize mining operations efficiency in which the mine utilizes mine trucks over a mine route. One such technique includes optimizing engine speed from a speed and torque management system. Such engine speed changes can be determined using information such as road grade data and mine stop locations, or whether the engine is in a retarder mode. Mine operation efficiency can be improved through use of adjustments made to a load acceptance curve. Changes to the load acceptance curve can be made through use of information such as road grade data and target truck speed. Improvements can be made through dynamically adjusted vehicle speed, such as through average route speed adjustments, or route segment adjustments in light of average route speed. A dynamic torque management system can provide efficiencies as limits are applied to torque using look ahead information.
Abstract:
A system includes a powertrain controller operatively coupled with and configured to control operation of a powertrain of a vehicle and for bidirectional communication via a wireless communication path. An optimization engine is configured to determine optimized powertrain operation parameters for the powertrain controller and for bidirectional communication via a second communication path. A channel management engine is configured for bidirectional communication with the powertrain controller via the wireless communication path and for bidirectional communication with the optimization engine via the second communication path, the channel management engine configured to dynamically update a plurality of data channels including a first data channel storing a non-transitory dynamically-updated instance of powertrain operation data received from the powertrain controller, and a second data channel storing a non-transitory dynamically-updated instance of optimized powertrain operation parameters received from the optimization engine.
Abstract:
Methods and systems for a powertrain power management in a vehicle with an electric motor, and an engine are disclosed. The methods and systems involve a powertrain that is operatively coupled to the engine and the electric motor, and an optimizer module operatively coupled to the powertrain. The optimizer module receives an operator information to travel a route from a remote management module, receives current route information for the route from a mapping application in response to the operator information, measures current vehicle status information for the hybrid vehicle, and decides a power management strategy for the vehicle based on the current route information and the current vehicle status information.
Abstract:
An apparatus includes an internal information circuit structured to receive internal information of a vehicle; a static information circuit structured to receive static information external to the vehicle; a dynamic information circuit structured to receive dynamic information external to the vehicle; an aftertreatment system goal determination circuit structured to determine a goal for an aftertreatment system of the vehicle based on at least one of the internal information, the static information, and the dynamic information; and a powertrain configuration circuit structured to configure a powertrain component of the vehicle to achieve the goal.
Abstract:
A system for charging a battery is provided, in which the system includes a plurality of sensors coupled with the battery, at least one battery charger coupled with the battery, and a processing unit coupled with the sensors and the battery charger. The processing unit includes a battery degradation modeling module and an aging-aware battery charging strategy module. The processing unit receives sensor information from the sensors, uses the battery degradation modeling module to detect aging phenomena or mechanisms that cause aging effect of the battery with a degradation model of the battery based on the sensor information, uses the aging-aware battery charging strategy module to calculate a charging profile for the battery based on the aging effect of the battery and the sensor information, and controls the battery charger to charge the battery based on the charging profile.
Abstract:
A vehicle system includes a powertrain including an electric motor operatively coupled with an automated manual transmission and an electronic control system including a gear shift control module, a transmission control module, and a motor control module in operative communication with one another over one or more controller area networks. The electronic control system includes supervisory controls configured to arbitrate between a plurality of motor operation requests received over the one or more controller area networks to select a winning motor operation request, the plurality of motor operation requests including the operator torque request, evaluate one or more shift inhibit conditions, and command the electric motor to provide the winning motor operation request when none of the one or more shift inhibit conditions evaluate as true.
Abstract:
Systems, apparatuses, and methods disclosed herein provide for receiving internal hybrid vehicle information, external static information, and external dynamic information; determining a propulsion power for the hybrid vehicle at a particular location at a particular time based on at least one of the internal hybrid vehicle information, the external static information, and the external dynamic information; determining a current state of charge of a battery, wherein the battery is operatively coupled to an electric motor in the hybrid vehicle; and managing a state of charge of the battery at the particular location at the particular time based on the current state of charge and the determined propulsion power.