Abstract:
Methods, devices, and systems are disclosed for a memory cell having a floating body. A memory cell may include a transistor over an insulation layer and including a source, and a drain. The memory cell may also include a floating body including a first region positioned between the source and the drain, a second region positioned remote from each of the source and drain, and a passage and extending through the insulation layer and coupling the first region to the second region. Additionally, the memory cell includes a bias gate at least partially surrounding the second region and configured for operably coupling to a bias voltage. Furthermore, the memory cell may include a plurality of dielectric layers, wherein each outer vertical surface of the second region has a dielectric layer of the plurality adjacent thereto.
Abstract:
Some embodiments include an integrated assembly having an array of vertically-extending active regions. Each of the active regions is contained within a four-sided area. Conductive gate material is configured as first conductive structures. Each of the first conductive structures extends along a row of the array. The first conductive structures include segments along three of the four sides of each of the four-sided areas. Second conductive structures are under the active regions and extend along columns of the array. Third conductive structures extend along the rows of the array and are adjacent the fourth sides of the four-sided areas. Storage-elements are coupled with the active regions. Some embodiments include methods of forming integrated assemblies.
Abstract:
A device comprises a vertical transistor including a semiconductive pillar comprising a source region, a drain region, and a channel region extending vertically between the source region and the drain region. The channel region comprises an oxide semiconductor material. The vertical transistor further comprises at least one gate electrode laterally neighboring the semiconductive pillar, a gate dielectric material laterally between the semiconductive pillar and the at least one gate electrode, and void spaces vertically adjacent the gate dielectric material and laterally intervening between the at least one gate electrode and each of the source region and the drain region of the semiconductive pillar. Related devices, electronic systems, and methods are also disclosed.
Abstract:
Methods of forming multi-tiered semiconductor devices are described, along with apparatus and systems that include them. In one such method, an opening is formed in a tier of semiconductor material and a tier of dielectric. A portion of the tier of semiconductor material exposed by the opening is processed so that the portion is doped differently than the remaining semiconductor material in the tier. At least substantially all of the remaining semiconductor material of the tier is removed, leaving the differently doped portion of the tier of semiconductor material as a charge storage structure. A tunneling dielectric is formed on a first surface of the charge storage structure and an an intergate dielectric is formed on a second surface of the charge storage structure. Additional embodiments are also described.
Abstract:
A memory can have a stacked memory array that can have a plurality of levels of memory cells. Each respective level of memory cells can be commonly coupled to a respective access line. A plurality of drivers can be above the stacked memory array. Each respective driver can have a monocrystalline semiconductor with a conductive region coupled to a respective access line.
Abstract:
Methods of forming conductive elements, such as interconnects and electrodes, for semiconductor structures and memory cells. The methods include forming a first conductive material and a second conductive material comprising silver in a portion of at least one opening and performing a polishing process to fill the at least one opening with at least one of the first and second conductive materials. An annealing process may be performed to form a mixture or an alloy of the silver and the material. The methods enable formation of silver containing conductive elements having reduced dimensions (e.g., less than about 20 nm). The resulting conductive elements have a desirable resistivity. The methods may be used, for example, to form interconnects for electrically connecting active devices and to form electrodes for memory cells. A semiconductor structure and a memory cell including such a conductive structure are also disclosed.
Abstract:
Some embodiments include an integrated assembly having a carrier-sink-structure, and having digit lines over the carrier-sink-structure. Transistor body regions are over the digit lines. Extensions extend from the carrier-sink-structure to the transistor body regions. The extensions are configured to drain excess carriers from the transistor body regions. Lower source/drain regions are between the transistor body regions and the digit lines, and are coupled with the digit lines. Upper source/drain regions are over the transistor body regions, and are coupled with storage elements. Gates are adjacent the transistor body regions. The transistor body regions, lower source/drain regions and upper source/drain regions are together comprised a plurality of transistors. The transistors and the storage elements are together comprised by a plurality of memory cells of a memory array. Some embodiments include methods of forming integrated assemblies.
Abstract:
A method of forming a device comprises forming a patterned masking material comprising parallel structures and parallel trenches extending at a first angle from about 30º to about 75º relative to a lateral direction. A mask is provided over the patterned masking material and comprises additional parallel structures and parallel apertures extending at a second, different angle from about 0º to about 90º relative to the lateral direction. The patterned masking material is further patterned using the mask to form a patterned masking structure comprising elongate structures separated by the parallel trenches and additional parallel trenches. Exposed portions of a hard mask material underlying the patterned masking structure are subjected to ARDE to form a patterned hard mask material. Exposed portions of a semiconductive material underlying the patterned hard mask material are removed to form semiconductive pillar structures. Devices and electronic systems are also described.
Abstract:
Non volatile memory devices comprising a memory string including a plurality of vertically superimposed diodes. Each of the diodes may be arranged at different locations along a length of the electrode and may be spaced apart from adjacent diodes by a dielectric material. The electrode may electrically couple the diodes of the memory strings to one another and to another memory device, such as, a MOSFET device. Methods of forming the non volatile memory devices as well as intermediate structures are also disclosed.
Abstract:
One-transistor (IT) (104) capacitor-less DRAM cells (100) each include a MOS transistor (104) having a bias gate layer (106) that separates a floating body- region (108) from a bulk base substrate (102). The MOS transistor functions as a storage device, eliminating the need of the storage capacitor. Logic "1" is written to and stored in the storage device by causing majority carriers (holes in an NMOS transistor) to accumulate and be held in the floating body region next to the bias gate layer, and is erased by removing the majority carriers from where they are held.