Abstract:
A source-synchronous system is provided in which a non-uniform interface may exist in a data source endpoint as well as in a data sink endpoint.
Abstract:
A CMOS device with a plurality of PMOS transistors each having a PMOS drain and a plurality of NMOS transistors each having an NMOS drain includes a first interconnect on an interconnect level extending in a length direction to connect the PMOS drains together. A second interconnect on the interconnect level extends in the length direction to connect the NMOS drains together. A set of interconnects on at least one additional interconnect level couple the first interconnect and the second interconnect together. A third interconnect on the interconnect level extends perpendicular to the length direction and is offset from the set of interconnects to connect the first interconnect and the second interconnect together.
Abstract:
A driver circuit includes an output driver (308) including a plurality of output driver legs. The driver circuit further includes a duty cycle adjuster (316) configured to adjust a duty cycle of a signal provided to the output driver. The driver circuit further includes an isolation module (320) configured to isolate at least one output driver leg of the output driver legs from remaining output driver legs of the output driver legs. The driver circuit further includes a duty cycle monitor configured to monitor an output of the at least one output driver leg when the at least one output driver leg is isolated from the remaining output driver legs, and to provide the monitored output to the duty cycle adjuster.
Abstract:
An output driver for driving a data output signal through an output pad includes a plurality of calibration paths to calibrate the impedance of the output pad. Depending upon the desired impedance, various ones of the calibration paths are selectively coupled to the output pad. Each selected calibration path adds a capacitive load to a data node, which affects the slew rate for the data output signal. To adjust the capacitive load on the data node in light of the calibration path selections, the output driver includes a plurality of selectable capacitors corresponding to the plurality of calibration paths. If a calibration path is not selected to couple to the output pad, the corresponding selectable capacitor capacitively loads the data node.
Abstract:
An output driver configured to drive an output node includes a pull-down section having a plurality of legs and a pull-up section having a plurality of pull-up legs. Each leg and pull-up leg includes a data path and a calibration path. The data paths in the pull-down section are configured to conduct to ground responsive to an assertion of a complement data output signal whereas the data paths in the pull-up section are configured to conduct to a power supply node responsive to a de-assertion of the complement data output signal.