摘要:
Method including receiving a teleoperation message via a communication link from an autonomous driverless vehicle, detecting data specifying an event associated with the autonomous vehicle like the degradation of a sensor, identifying one or more courses of action to perform responsive to the event, simulating the courses of action to calculate simulated values and generating visualization data to present information associated with the event to a display of a teleoperator computing device to allow selection of a desired course of action.
摘要:
Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. More specifically, systems, devices, and methods are configured to manage a fleet of autonomous vehicles, in particular, a method may include determining destination locations for autonomous vehicles, calculating, at an autonomous vehicle service platform, delivery locations to which the autonomous vehicles arc directed, identifying data to implement a delivery location associated with an autonomous vehicle, and transmitting data representing a command to the autonomous vehicle. The command may be configured to cause navigation of the autonomous vehicle to the delivery location.
摘要:
Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include receiving, from a user device, a ride request to transport a user to a destination from an origin location through an autonomous vehicle system service. Based on the origin location associated with the request, an autonomous vehicle system may be selected from a fleet of autonomous vehicles to execute the ride request. The fleet may be managed by the autonomous vehicle system service. The ride request may then be provided to the autonomous vehicle system, and information about the autonomous vehicle system may also be provided to the user device.
摘要:
Systems and methods implemented in algorithms, software, firmware, logic, or circuitry may be configured to process data to determine whether an object external to an autonomous vehicle is a person (e.g., such as a pedestrian) or other classification (e.g., such as a vehicle), and may be further configured to determine a position of the person relative to the autonomous vehicle. Logic may be configured to direct acoustic energy (e.g., via vehicular acoustic beam- forming) to an object external to the autonomous vehicle as an audible acoustic alert. The vehicle- related acoustic beam may be directed to a driver in another vehicle. Logic may be configured to track the motion of external objects, such as a pedestrian crossing from one side of the street to the other, and may correspondingly steer the direction of the vehicle-related acoustic beam(s) to track the person's movement.
摘要:
Systems, apparatus and methods to implement sectional design (e.g., in quadrants) of an autonomous vehicle may include modular construction techniques to assemble an autonomous vehicle from multiple structural sections. The multiple structural sections may be configured to implement radial and bilateral symmetry. A structural section based configuration may include a power supply configuration (e.g., using rechargeable batteries) including a double-backed power supply system. The power supply system may include a kill switch disposed on a power supply (e.g., at an end of a rechargeable battery). The kill switch may be configured to disable the power supply system in the event of an emergency or after a collision, for example. The radial and bilateral symmetry may provide for bi-directional driving operations of the autonomous vehicle as the vehicle may not have a designated front end or a back end.
摘要:
Systems and methods implemented in algorithms, software, firmware, logic, or circuitry may be configured to process data to determine whether an object external to an autonomous vehicle is a person (e.g., such as a pedestrian) or other classification (e.g., such as a vehicle), and may be further configured to determine a position of the person relative to the autonomous vehicle. Logic may be configured to direct acoustic energy (e.g., via vehicular acoustic beam- forming) to an object external to the autonomous vehicle as an audible acoustic alert. The vehicle- related acoustic beam may be directed to a driver in another vehicle. Logic may be configured to track the motion of external objects, such as a pedestrian crossing from one side of the street to the other, and may correspondingly steer the direction of the vehicle-related acoustic beam(s) to track the person's movement.
摘要:
Systems, apparatus and methods to multiple levels of redundancy in torque steering control and propulsion control of an autonomous vehicle include determining that a powertrain unit of the autonomous vehicle is non-operational and disabling propulsion operation of the non-operational powertrain unit and implementing torque steering operation in another powertrain unit while propelling the autonomous vehicle using other powertrain units that are configured to implement torque steering operation and propulsion operation.
摘要:
Systems, apparatus and methods implemented in algorithms, hardware, software, firmware, logic, or circuitry may be configured to process data and sensory input to determine whether an object external to an autonomous vehicle (e.g., another vehicle, a pedestrian, road debris, a bicyclist, etc.) may be a potential collision threat to the autonomous vehicle. The autonomous vehicle may be configured to implement interior active safety systems to protect passengers of the autonomous vehicle during a collision with an object or during evasive maneuvers by the autonomous vehicle, for example. The interior active safety systems may be configured to provide passengers with notice of an impending collision and/or emergency maneuvers by the vehicle by tensioning seat belts prior to executing an evasive maneuver and/or prior to a predicted point of collision.
摘要:
Disclosed are systems, apparatus and methods for implementing an active safety system in an autonomous vehicle. An autonomous vehicle (100) may be travelling through an environment (190) external to the autonomous vehicle (100) along a trajectory (105). The environment (190) may include one or more objects that may potentially collide with the autonomous vehicle (100), such as static and/or dynamic objects, or objects that pose some other danger to passengers riding in the autonomous vehicle (100) and/or to the autonomous vehicle (100). An object (180) (e.g., an automobile) is depicted as having a trajectory (185), that if not altered (e.g., by changing trajectory, slowing down, etc.), may result in a potential collision (187) with the autonomous vehicle (100) (e.g., by rear-ending the autonomous vehicle (100)). The autonomous vehicle (100) may use a sensor system to sense (e.g., using passive and/or active sensors) the environment (190) to detect the object (180) and may take action to mitigate or prevent the potential collision of the object (180) with the autonomous vehicle (100).
摘要:
Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. In particular, a method may include receiving an indication of a sensor anomaly, determining one or more sensor recovery strategies based on the sensor anomaly, and executing a course of action that ensures the autonomous vehicle system operates within accepted parameters. Alternative sensors may be relied upon to cover for the sensor anomaly, which may include a failed sensor while the autonomous vehicle is in operation.