Abstract:
An X-ray standard reference object for calibrating a scanning electron beam in an additive manufacturing apparatus by measuring X-ray signals generated by scanning the electron beam onto the reference object, the reference object comprises: a lower and an upper plate being essentially in parallel and attached spaced apart from each other, the upper plate comprises a plurality of holes, wherein a predetermined hollow pattern is provided inside the holes.
Abstract:
Durch die pendelnde Bewegung beim Schweißen in vertikaler und/ oder horizontaler Richtung werden kleinere Körner erzielt, die die Entstehung von Rissen beim Schweißen verhindern. Die Erfundung beträgt ein Verfahren zum Schweissen eines Substrats (3), bei dem eine Energiequelle (13) und/oder eine Materialzufuhr (14) pendelnd gegenüber der Oberfläche (5) des Substrats (3) bewegt wird oder werden.
Abstract:
Die Erfindung betrifft ein Verfahren zum generativen Herstellen zumindest eines Bauteilbereichs eines Bauteils, insbesondere eines Bauteils einer Turbine oder eines Verdichters, bei welchem zumindest die Schritte a) Auftragen einer Pulverschicht (10a-c) auf eine Bauteilplattform im Bereich einer Aufbau- und Fügezone, b) Lokales Verschmelzen und/oder Versintern der Pulverschicht (10a-c), indem wenigstens ein Hochenergiestrahl im Bereich der Aufbau- und Fügezone relativ zur Bauteilplattform bewegt wird und die Pulverschicht (10a-c) selektiv beaufschlagt, wobei der wenigstens eine Hochenergiestrahl und die Bauteilplattform zumindest bereichsweise in Form einer entlang einer linearen Vorschubrichtung (12) angeordneten Parallelenschar (16) relativ zueinander bewegt werden, c) Absenken der Bauteilplattform um eine vorbestimmte Schichtdicke in einer Absenkrichtung, und d) Wiederholen der Schritte a) bis c) bis zur Fertigstellung des Bauteilbereichs durchgeführt werden. Dabei ist es vorgesehen, dass der wenigstens eine Hochenergiestrahl und die Bauteilplattform bei wenigstens zwei unterschiedlichen Pulverschichten (10a-c) derart relativ zueinander bewegt werden, dass in Pulverschichtbereichen, die in Absenkrichtung übereinander liegen, die jeweiligen Parallelenscharen (16) der jeweiligen Pulverschichten (10a-c) in unterschiedlichen Winkeln zur jeweiligen linearen Vorschubrichtung (12) angeordnet werden. Die Erfindung betrifft weiterhin eine Vorrichtung zur Durchführung eines derartigen Verfahrens.
Abstract:
A method for the formation of nanometer-scale electrodes, wherein strip of electrically conductive material, in particular metal, is provided with a longitudinal direction, a width direction and a thickness direction and then, with the aid of an electron beam, a groove is provided in a top surface of the strip, in the width direction of the strip, with a nanometer- scale width in the longitudinal direction of the strip.
Abstract:
A material delivery system (10) is provided for miniature structures fabrication which has a substrate (11), a material carrier (15) having a deposition layer (16), and a laser beam (12) directed towards the material carrier element (15). A control unit (18) is operatively coupled to the substrate (11), the material carrier element (15) and laser beam (12) for exposing respective areas of the deposition layer (16) to the laser beam (12) in a patterned manner so that the depositable material (16) of the deposition layer (16) is transferred to the substrate (11) surface for deposition on its surface. The system (10) operates in either an additive mode of operation, or a subtractive mode of operation so that a workpiece (11) does not have to be removed from the tool when change of modes of operation takes place.
Abstract:
A component (1) is formed by means of additive manufacturing by repeating a series of cycles, where each cycle has a depositing step for forming a powder layer (22) of substantially constant thickness; a pre¬ heating step, for pre-heating the powder layer (22); and a melting step, for melting some areas of said powder layer (22) by means of an energy beam so as to form a horizontal section (170) of the component (1) that must be obtained; at the end of all cycles, the top surface (21) of the horizontal section that has been formed is lowered until it reaches a predetermined height (Q); the pre-heating step is performed by moving a heat source (30) above the powder layer (22) at the same time as the depositing step, at least for an initial part of the pre-heating step.
Abstract:
A powder bed deposition apparatus comprises a movable build plate, a powder delivery system, an energy beam apparatus capable of selectively steering at least one focused energy beam over successive quantities of metal powder, a non-metallic barrier layer, and an anchor removably secured to the build plate. The non-metallic barrier layer is disposed over a metal upper surface of the build plate. The anchor has a metal bonding surface flush with the non-metallic barrier layer, the non-metallic barrier layer and the anchor defining a removable build assembly with a powder bed working surface.
Abstract:
Pulse-position synchronization is provided in miniature structure manufacturing processes which is carried out in a fabrication tool (10) having a target (23), a source (11) of energy generating pulses of energy, and a control unit (15) operatively coupled to the source (11) of energy and the target (23). The technique includes the steps of exposing a target (23) to a first pulse of energy, pausing the exposure of the target (23) while providing relative motion between the target (23) and the energy source (11) at a predetermined maximum speed, and slowing (or stopping) relative motion between the target (23) and the energy source (11), while exposing the target (23) to a second pulse of energy. The fabrication tool (10) employing the pulse-position synchronization can be operated by the control unit (15) in either patterned "additive" or patterned "subtractive" modes of operation.
Abstract:
Apparatus (10) for performing patterned cleaning of substrate surfaces (11) includes substrate (11), energetic beam (12) directed to the substrate (11), material carrier element (14) having a deposition layer (16), and a control unit (8) operating the apparatus (10) in either a "material removal" or a "material transfer" mode in a predetermined sequence. In the "material removal" mode, the following steps are followed which include displacing the material carrier element (14) from the interception with the energy beam (12) and allowing impinging of the energy beam (12) on the surface of the substrate in a predetermined patterned fashion so that the material of the substrate surface is disintegrated at predetermined locations of the substrate surface (11). After the first cleaning, the control unit (18) changes the mode of operation to the "material transfer" by moving the material carrier element (14) into position intercepting with the energy beam (12) so that the material of the deposition layer (16) is deposited on the surface of the substrate (11).