Abstract:
A seal system is disclosed comprising a male body (1) and a female body (2) that are slidable in relation to one another in an axial direction and between which an interstice is comprised through which the plastics in molten state can pass that are contained in a chamber (3) partially defined by at least one of the aforesaid bodies, a seal ring (4) being arranged in said interstice to prevent the leak of the plastics.
Abstract:
The invention relates to a calibration device for the extrusion of profiles from plastics material, characterized by at least one tank calibrator (21, 22, 23, 24) having an opening (26) and a running surface (27) for the extruded profile, said tank calibrator being arrangeable in a vacuum tank (3) with cooling water and the heat of the extruded profile being transmissible at least partially to the cooling water via the outer surface of said tank calibrator, wherein the at least one tank calibrator (21, 22, 23, 24) has at least one cooling channel (29) for cooling the running surfaces (27), and the axial length (X) of the tank calibrator (21, 22, 23, 24) corresponds at least to the height (H) and/or the width (B) of the nominal dimension of the profile. The invention also relates to a calibration method and to a tank calibrator.
Abstract:
Die Erfindung betrifft eine Vorrichtung (1) zum Absaugen von Abfallprodukten (2) einer Produktionsmaschine (3), insbesondere einer Folienextrusionsmaschine, mit einer Saugkammer (10), an der mindestens ein Absaugelement (20) angeordnet ist, das in einen außerhalb der Saugkammer (10) sich befindenden Absaugraum (4) sich erstrecken, um Abfallprodukte in die Saugkammer (10) zu befördern, einer Saugeinheit (5), um einen Unterdruck in der Saugkammer (10) entstehen zu lassen. Erfindungsgemäß ist vorgesehen, dass ein Abdichtmittel (40), das am Absaugelement (20) anliegt und die Saugkammer (10) verschließt, derart ausgeführt ist, dass das Absaugelement (20) entlang des Abdichtmittels (40) bewegbar ist, wodurch die Position des Absaugelements (20) an der Saugkammer (10) variabel einstellbar ist.
Abstract:
Das Patent beschreibt eine Düse für einen Extruder bestehend aus einem Kern (1) und einem mindestens zweigeteilten Gehäuse (2, 3), umfassend einen feststehenden Gehäusegrundkörper (2) und ein Endteil des Gehäuses (3), an dem die fließfähige Masse (12) die Düse verlässt, wobei das Gehäuse (2, 3) den Kern (1) so umschließt, dass zwischen Kern (1) und Gehäuse (2, 3) ein Fließkanal (4) vorhanden ist, durch den eine fließfähige Masse (12) ausgetragen werden kann, dadurch gekennzeichnet, dass der Fließkanal (4) im Bereich der Trennung zwischen dem Gehäusegrundkörper (2) und dem angrenzenden Endteil (3) mittels einer elastisch verformbaren Dichtung (5) abgedichtet wird, und das Endteil (3) auf dieser Dichtung (5) in beliebiger Richtung kippbar gelagert ist, sowie Verfahren zur gezielten Veränderung beziehungsweise zur Regelung der Dickenverteilung von fließfähigen Massen, wobei sowohl vorhandene exzentrische als auch unsymmetrische Dickenunterschiede unabhängig voneinander oder aber auch in verknüpfter Form ausgeregelt werden können.
Abstract:
A rotary seal housing having opposing ends (43, 44), a first fluid conducting slot (71) at one of the opposing ends, a pair of spaced apart fluid conducting slots (60, 61) at the other opposing end, and sets of apertures (64) connecting the first fluid conducting slot (71) with the pair of fluid conducting slots (60,61), the housing having helical push back grooves that are arcuate in cross-section.
Abstract:
The invention relates to a rotating nozzle structure of an extruder which comprises a rotatable nozzle (4), a die (2), which rests against the extruder frame (1) and which comprises an annular front surface (6) on the nozzle (4) side, and a sealing plate (7), which is arranged between the front surface (6) of the die (2) and the nozzle (4) and pressed tightly against the sealing surface of the nozzle to seal the nozzle (4) with respect to the die (2). According to the invention, the die (2) is arranged to slide in the axial direction with respect to the extruder frame (1) and comprises a flow channel, which is under pressure of the material to be extruded and tapers conically towards the nozzle, and that the ratio of the area (Atiiv) of the die's annular front surface (6) to the area (Aproj) of the projection surface of the flow channel's conical section is between 0.1...10.
Abstract:
An extrusion system utilizes single (30) or tandem extruders (102 and 103) and a mixer-cooler (104) to extrude a foamable extrudate through a die (37) in a sealable chamber. The foamable extrudate is shaped and calibrated within the chamber (40). The product exits the chamber to atmosphere on a continuous basis through a submerged orifice in a water baffle immersion seal. The seal includes the submerged orifice with a free wheeling guiding system upstream of the orifice. Immediately ahead of the guiding system, the parameters of the foam extrudate are sensed to control the configuration of the orifice on a continuous basis. Before the extrudate passes into the water baffle seal it moves over a floating dancer roll (65), the position of which controls a haul-off, such as a vacuum belt, at the tail end of the system. This avoids pushing on the extrudate.
Abstract:
Methods for extrusion of polyolefins (110) that utilize melt temperature to control molecular weight and also reduce gels. Disclosed herein is an example method for controlling polymer chain scission in an extrusion system (100), comprising: melting a polyolefin resin (110) in extruder (102) at a first melt temperature to form a first melt (112); passing the first melt (112) through a screen pack (106); forming the first melt 112) into a first polyolefin product (116, 118); melting additional polyolefin resin (110) of the same grade in the extruder (102) at a second melt temperature to form a second melt (112), wherein the second melt temperature differs from the first melt temperature by 5°C or more to control chain scission in the extruder (102); passing the second melt (112) through the screen pack (106); and forming the second melt (112) into a second polyolefin product (116, 118).