Abstract:
According to the invention at least part of a CMOS circuit is decoupled from the bulk of the substrate by positioning this at least part of the CMOS circuit on a secondary substrate (2) with considerably less bulk than the original substrate (1) and by decoupling the secondary substrate (2) at least partly from the substrate (1). This is realised by a combination of multi-well technology and etching with electro-chemical etch stop either from the back or from the front of the wafer (e.g. anisotropic etching). A multi-well is a region consisting of a well diffusion (p- or n-doped) (2) which at least partially contains at least one further well diffusion (3), whereby the deepest well (2) or another well of the multi-well structure is designed to function as a secondary substrate.
Abstract:
Microfabricated filters (100) utilizing a bulk substrate structure (101) and a thin film structure (103) and a method for constructing such filters (100). The pores (105) of the filters (100) are defined by spaces between the bulk substrate structure (101) and the thin film structure (103) and are of substantially uniform width, length and distribution. The width of the pores (105) is defined by the thickness of a sacrificial layer (not shown) and therefore may be smaller than the limit of resolution obtainable with photolithography. The filters (100) provide enhanced mechanical strength, chemical inertness, biological compatibility, and throughput. The filters (100) are constructed using relatively simple fabrication techniques.
Abstract:
A piezoelectric microphone and/or a piezoelectric microphone system is presented herein. In an implementation, a piezoelectric microphone includes a microelectromechanical systems (MEMS) layer and a complementary metal-oxide-semiconductor (CMOS) layer. The MEMS layer includes at least one piezoelectric layer and a conductive layer. The conductive layer is deposited on the at least one piezoelectric layer and is associated with at least one sensing electrode. The CMOS layer is deposited on the MEMS layer. Furthermore, a cavity formed in the CMOS layer includes the at least one sensing electrode
Abstract:
A device including a NEMS/MEMS machine(s) and associated electrical circuitry. The circuitry includes at least one transistor, preferably JFET, that is used to: (i) actuate the NEMS/MEMS machine; and/or (ii) receive feedback from the operation of the NEMS/MEMS machine The transistor (e.g., the JFET) and the NEMS/MEMS machine are monolithically integrated for enhanced signal transduction and signal processing. Monolithic integration is preferred to hybrid integration (e.g., integration using wire bonds, flip chip contact bonds or the like) due to reduce parasitics and mismatches. In one embodiment, the JFET is integrated directly into a MEMS machine, that is in the form of a SOI MEMS cantilever, to form an extra-tight integration between sensing and electronic integration. When a cantilever connected to the JFET is electrostatically actuated; its motion directly affects the current in the JFET through monolithically integrated conduction paths (e.g., traces, vias, etc.) In one embodiment, devices according to the present invention were realized in 2?m thick SOI cross-wire beams, with a MoSi2 contact metallization for stress minimization and ohmic contact. In this embodiment, the pull-in voltage for the MEMS cantilever was 21V and the pinch-off voltage of the JFET was -19V.
Abstract:
A device including a NEMS/MEMS machine(s) and associated electrical circuitry. The circuitry includes at least one transistor, preferably JFET, that is used to: (i) actuate the NEMS/MEMS machine; and/or (ii) receive feedback from the operation of the NEMS/MEMS machine The transistor (e.g., the JFET) and the NEMS/MEMS machine are monolithically integrated for enhanced signal transduction and signal processing. Monolithic integration is preferred to hybrid integration (e.g., integration using wire bonds, flip chip contact bonds or the like) due to reduce parasitics and mismatches. In one embodiment, the JFET is integrated directly into a MEMS machine, that is in the form of a SOI MEMS cantilever, to form an extra-tight integration between sensing and electronic integration. When a cantilever connected to the JFET is electrostatically actuated; its motion directly affects the current in the JFET through monolithically integrated conduction paths (e.g., traces, vias, etc.) In one embodiment, devices according to the present invention were realized in 2?m thick SOI cross-wire beams, with a MoSi2 contact metallization for stress minimization and ohmic contact. In this embodiment, the pull-in voltage for the MEMS cantilever was 21V and the pinch-off voltage of the JFET was -19V.