Abstract:
In the method according to the invention in the manufacture of an elevator the following procedures are performed, -a movable supporting platform (4) and an elevator car (2), and possibly a counterweight (CW), are installed in the elevator hoistway (1), -the rope installation is performed, in which the elevator is reeved to comprise construction-time hoisting roping (3,3'), and the hoisting roping (3,3') is arranged to support the elevator car (2) resting on the supporting platform (4) supported in its position above the elevator car (2), -the elevator car (2) is taken into use to serve passengers and/or to transport goods, -the elevator car (2) is removed from the aforementioned use, - the service range of the elevator car is changed to reach higher up in the elevator hoistway (1) by lifting the supporting platform higher up in the elevator hoistway with hoisting means (22,30), -the elevator car (2) is taken back into the aforementioned use. In the aforementioned rope installation the elevator is reeved to comprise construction-time hoisting roping (3,3')/ which comprises one or more ropes, the longitudinal power transmission capacity of which is based at least essentially on non-metallic fibers in the longitudinal direction of the rope. In the method guide rails (G) to be fixed with guide rail brackets (b) can additionally be installed by the aid of installation means (8,9). The invention also relates to an elevator arrangement, with which the aforementioned method can be performed.
Abstract:
Elevator, which comprises at least an elevator car (C) and means for moving the elevator car, preferably along guide rails (G), and an overspeed governor arrangement, which comprises an overspeed governor rope (R,R',R''), which moves according to the movement of the elevator car, and which overspeed governor rope (R,R',R'') is connected to a brake arrangement that is in connection with the elevator car (C) such that with the overspeed governor rope (R,R',R'') force can be transmitted to the brake arrangement for shifting the brake (SG) comprised in the brake arrangement into a braking position. The rope comprises a power transmission part (2) or a plurality of power transmission parts (2), for transmitting force in the longitudinal direction of the rope, which power transmission part (2) is essentially fully of non-metallic material.
Abstract:
The present invention concerns a method of producing a strand (2) comprising wires (3) twisted together. The wires (3) are individually coated with a protective anti-corrosive barrier film containing a volatile migratory corrosion inhibitor (VMCI). The individually coated wires may then be enclosed in a protective sheath (4), and the spaces (6) between the sheath (4) and the wires (3) may filled with a corrosion-inhibiting filler substance (7). The sheath (4) and/or the corrosion-inhibiting filler substance (7) may also contain a volatile corrosion-inhibiting agent.
Abstract:
A hoisting machine rope (10), which has a width larger than its thickness in a transverse direction of the rope, which comprises a load-bearing part (11) made of a composite material, said composite material comprising non-metallic reinforcing fibers, which consist of carbon fiber or glass fiber, in a polymer matrix. An elevator, which comprises a drive sheave, an elevator car and a rope system for moving the elevator car by means of the drive sheave, said rope system comprising at least one rope whose width (t2) is larger than its thickness (tl) in a transverse direction of the rope, and the rope comprises a load- bearing part (11) made of a composite material, said composite material comprising reinforcing fibers in a polymer matrix.
Abstract:
A method for manufacturing a hoisting rope (R,R',R",R'") is disclosed, comprising the steps of providing a plurality of elongated composite members (1,1',1",1"'), which composite members (1,1',1",1 "') are made of composite material comprising reinforcing fibers (f) in polymer matrix (m); and arranging the composite members (1,1',1",1"') to form an elongated row (r,r',r",r"') of parallel composite members 1,1',1",1"' , which row (r,r',r",r"') has a longitudingal direction (L), a thickness direction (T) and a width direction (W), and in which row (r,r',r",r"') the composite members (1,1',1",1 "') are positioned side by side such that they are parallel to each other, and spaced apart from each other in width direction (W) of the row (r,r',r",r"'); and directing plasma treatment on the outer surface of the composite members (1,1',1",1"'); and embedding the composite members (1,1',1",1'") in fluid polymer material (2); and solidifying the polymer material wherein the composite members (1,1',1 ",1 "') are embedded. The invention relates also to a hoisting rope onbtained with the method and an elevator comprising the hoisting rope. An elevator load bearing belt obtained by said method is also disclosed.
Abstract:
L'invention concerne un câble monotoron gommé in situ (C) comprenant: • - une couche interne du câble (CT1) comprenant N1 fil(s) interne(s), • - une couche externe du câble (CT3) comprenant N3 fils externes enroulés en hélice autour de la couche interne du câble, • - une composition de caoutchouc (20) disposée entre la couche interne du câble et la couche externe du câble. La composition de caoutchouc (20) comprend un oxyde métallique et une résine époxyde comprenant au moins un motif comprenant un noyau aromatique et/ou une chaîne aliphatique insaturée.