Abstract:
A microfluidic valve provided herein is configured to mix or capable of mixing a sample and/or a reagent in addition to controlling liquid flow. In one embodiment, the microfluidic valve comprises a rotor (3) and one or more micro-structures (2) that move with the rotation of the rotor (3). In one embodiment, the one or more micro-structures (2) stir and/or mix content in a mixing chamber (5) formed by the rotor (3), a base (1), and a sleeve (4) of the microfluidic valve. A microfluidic chip or chip system comprising one or more of the microfluidic valves, and methods of use, are also provided.
Abstract:
Systems and methods for conducting designated reactions that include a fluidic network having a sample channel, a reaction chamber, and a reservoir. The sample channel is in flow communication with a sample port. The system also includes a rotary valve that has a flow channel and is configured to rotate between first and second valve positions. The flow channel fluidically couples the reaction chamber and the sample channel when the rotary valve is in the first valve position and fluidically couples the reservoir and the reaction chamber when the rotary valve is in the second valve position. A pump assembly induces a flow of a biological sample toward the reaction chamber when the rotary valve is in the first valve position and induces a flow of a reaction component from the reservoir toward the reaction chamber when the rotary valve is in the second valve position.
Abstract:
According to the invention there is a microfluidic chip (1) that includes at least two layers (10) forming a stack of layers, each layer of which has at least one flow channel (14); a bore (16) extending through the layers and communicating with a plurality of flow channels; and a valve (20), which has a shaft (22) with a recess (222) in a side of the shaft for fluid to flow through. The shaft is rotatably mounted in the bore, and has a first position in which the recess is aligned with each of at least two flow channels of the plurality of flow channels thereby providing a flow path between said at least two flow channels, and a second position in which the recess is unaligned with at least one of said at least two flow channels the flow path between said at least two flow channels thereby being closed. This allows a fluid flow path between two flow channels to be open and closed by rotation of the shaft so that fluid in the microfluidic chip can be redirected to allow the chip to have greater capability and by using a minimal amount of space on the chip to do so.
Abstract:
A fluid flow regulator (1) of the passive type is disclosed which has a fluid inlet adapted to be connected to a fluid reservoir and a fluid outlet (13)adapted to be connected to a patient's body. The regulator comprises a rigid substrate (2) and a resilient membrane (3) tightly linked together so as to define a cavity (6) there between which is disconnected to the fluid outlet while the membrane has a first surface (12) opposite the cavity which is connected to the fluid inlet. The membrane has a plurality of through holes (15) contiguous with the cavity,to define a pathway for a fluid from the fluid inlet to the fluid outlet, and is flexible so as to be able to come into contact with the substrate as a fluid applies a sufficient pressure on the first surface. The through holes are arranged such that,when the fluid pressure increases, they close one after the other to increase the regulator fluidic resistance so that a fluid flow rate would be substantially constant as a function of the pressure applied on the first surface within a predefined pressure range.
Abstract:
A fluidic arrangement for an improved optical detection for a microfluidic device is provided, having a channel adapted to conduct a fluid, and a coupling device (1) having at least two coupling channels, one of which selectable for optical detection without interrupting processes running in the other channel(s). The coupling device is coupled with the fluidic device (2), so that the fluid flows from a channel of the fluidic device (2) into one of the coupling channels. The coupling channel having an optical detection portion (6) is part of a detection lane adapted to detect the fluid flowing therethrough, while the fluid flowing through the coupling channel without an optical detection portion is not influenced by the detecting activity. A vertical axis (a-a) permits turning of the coupling device (1) whereas the microfluidic device (2) is statically arranged. Turning leads to alternation of optical detection lane and an idle lane, enabling to detect the fluid of another lane. A method for performing optical detection of fluids processed in a fluidic device comprising one or multiple channels by use of the fluidic arrangement.
Abstract:
A micro (thin film type) valve apparatus for controlling fluid flow and its rate using a microbead and a method for controlling the apparatus are provided. The microbead is moved by the magnetic forge generated by upper and lower electromagnets disposed on the top and bottom surface of the body or by the electric field generated by upper and lower electrode plates disposed on the top and bottom surface of the body, thereby interconnecting or blocking flow channels in the body. The micro valve apparatus and the method for controlling the same are suitable for thin film type diagnostic assay devices, such as lab-on-chips, protein chips, or DNA chips, for detecting small quantities of analytes in fluids, and more suitable for interconnecting or blocking channels formed in thin disk type apparatus including general CD-ROMs,DVDs, bioCDs, and bio DVDs.
Abstract:
A valve for use in microfluidic structures. The valve uses a spherical member, such as a ball bearing, to depress an elastomeric member to selectively open and close a microfluidic channel. The valve may be operated manually or by use of an internal force generated to shift the spherical member to its activated position.
Abstract:
A device for sensing fluid movement within a microfluidic channel which uses feedback to control its operation. The device measures electric parameters to interpret fluidic parameters such as flow speed, and the presence or absence of fluid within the channel.
Abstract:
An exemplary compounding system and method can include two pump heads for simultaneously drawing two different fluids from at least two separate input containers such that the at least two different fluids are mixed and distributed to an output container. The system can include a manifold that maintains separation of certain of the different fluids until after passing by a first pump and a second pump and/or additional pumps. A junction can be placed in the fluid line downstream of the first and second pumps and/or additional pumps such that all or some of the fluids are mixed prior to output to the output container. The method of using the system can include incorporating software that selects various fluids at certain times and sequences to ensure optimum efficiency and safety for the system, and can continue compounding actions even when an input supply container runs out or otherwise fails to supply a particular fluid/material. The method of use also includes connection of a transfer set to a housing in a manner that further ensures optimum efficiency and safety.
Abstract:
According to the invention there is a microfluidic chip (1) that includes at least two layers (10) forming a stack of layers, each layer of which has at least one flow channel (14); a bore (16) extending through the layers and communicating with a plurality of flow channels; and a valve (20), which has a shaft (22) with a recess (222) in a side of the shaft for fluid to flow through. The shaft is rotatably mounted in the bore, and has a first position in which the recess is aligned with each of at least two flow channels of the plurality of flow channels thereby providing a flow path between said at least two flow channels, and a second position in which the recess is unaligned with at least one of said at least two flow channels the flow path between said at least two flow channels thereby being closed. This allows a fluid flow path between two flow channels to be open and closed by rotation of the shaft so that fluid in the microfluidic chip can be redirected to allow the chip to have greater capability and by using a minimal amount of space on the chip to do so.