Abstract:
Structured substrate including (a) a plurality of nanoparticles distributed on a solid support, (b) a gel material forming a layer in association with the plurality of nanoparticles, and (c) a library of target nucleic acids in the gel material.
Abstract:
A microarray is designed capture one or more molecules of interest at each of a plurality of sites on a substrate. The sites comprise base pads, such as polymer base pads, that promote the attachment of the molecules at the sites. The microarray may be made by one or more patterning techniques to create a layout of base pads in a desired pattern. Further, the microarrays may include features to encourage clonality at the sites.
Abstract:
Systems and methods for conducting designated reactions that include a fluidic network having a sample channel, a reaction chamber, and a reservoir. The sample channel is in flow communication with a sample port. The system also includes a rotary valve that has a flow channel and is configured to rotate between first and second valve positions. The flow channel fluidically couples the reaction chamber and the sample channel when the rotary valve is in the first valve position and fluidically couples the reservoir and the reaction chamber when the rotary valve is in the second valve position. A pump assembly induces a flow of a biological sample toward the reaction chamber when the rotary valve is in the first valve position and induces a flow of a reaction component from the reservoir toward the reaction chamber when the rotary valve is in the second valve position.
Abstract:
Systems and methods for conducting designated reactions that include a fluidic network having a sample channel, a reaction chamber, and a reservoir. The sample channel is in flow communication with a sample port. The system also includes a rotary valve that has a flow channel and is configured to rotate between first and second valve positions. The flow channel fluidically couples the reaction chamber and the sample channel when the rotary valve is in the first valve position and fluidically couples the reservoir and the reaction chamber when the rotary valve is in the second valve position. A pump assembly induces a flow of a biological sample toward the reaction chamber when the rotary valve is in the first valve position and induces a flow of a reaction component from the reservoir toward the reaction chamber when the rotary valve is in the second valve position.
Abstract:
A method of reading a plurality of encoded microvessels used in an assay for biological or chemical analysis The method can include providing a plurality of encoded microvessels The microvessels can include a respective microbody and a reservoir core configured to hold a substance in the reservoir core The microbody can include a material that surrounds the reservoir core and facilitates detection of a characteristic of the substance within the reservoir core Optionally, the material can be transparent so as to facilitate detection of an optical characteristic of a substance within the reservoir core The microbody can include an identifiable code associated with the substance The method can also include determining the corresponding codes of the microvessels.