Abstract:
Described is a tunneling field effect transistor (TFET), comprising: a drain region having a first conductivity type; a source region having a second conductivity type opposite of the first conductivity type; a gate region to cause formation of a channel region between the source and drain regions; and a pocket disposed near a junction of the source region, wherein the pocket region formed from a material having lower percentage of one type of atom than percentage of the one type of atom in the source, channel, and drain regions.
Abstract:
An electronic device (10) can include a gated diode, wherein the gated diode includes a junction diode structure including a junction. A first conductive member (101) spaced apart from and adjacent to the junction can be connected to a first signal line. A second conductive member (102), spaced apart from and adjacent to the junction, can be both electrically connected to a second signal line and electrically insulated (32, 22) from the first conductive member. The junction diode structure can include a p-n or a p-i-n junction. A process for forming the electronic device is also described.
Abstract:
A method for forming first and second linear structure of a first composition that meet at right angles, there being a gap at the point at which the structures meet. The linear structures are constructed on an etchable crystalline layer having the first composition. First and second self-aligned nanowires of a second composition are grown on this layer and used as masks for etching the layer. The self-aligned nanowires are constructed from a material that has as asymmetric lattice mismatch with respect to the crystalline layer. The gap is sufficiently small to allow one of the structures to act as the gate of a transistor and the other to form the source and drain of the transistor. The gap can be filled with electrically switchable materials thereby converting the transistor to a memory cell.
Abstract:
A monolithically integrated MOS channel in gate-source shorted mode is used as a diode for the third quadrant conduction path for a power MOSFET. The MOS diode and MOSFET can be constructed in a variety of configurations including split-cell and trench. The devices may be formed of silicon carbide, gallium nitride, aluminum nitride, aluminum gallium nitride, diamond, or similar semiconductor. Low storage capacitance and low knee voltage for the MOS diode can be achieved by a variety of means. The MOS diode may be implemented with channel mobility enhancement materials, and/or have a very thin/high permittivity gate dielectric. The MOSFET gate conductor and MOS diode gate conductor may be made of polysilicon doped with opposite dopant types. The surface of the MOS diode dielectric may be implanted with cesium.
Abstract:
A semiconductor device includes a gate (210) and a first active contact (220) adjacent to the gate. Such a device further includes a first stacked contact (1310) electrically coupled to the first active contact, including a first isolation layer (1200) on sidewalls electrically isolating the first stacked contact from the gate. The device also includes a first via (2000) electrically coupled to the gate and landing on the first stacked contact. The first via electrically couples the first stacked contact and the first active contact to the gate to ground the gate.
Abstract:
The present invention relates to a tunnel field-effect transistor (1) comprising: at least a source region (2) comprising a corresponding source semiconductor material; at least a drain region (3) comprising a corresponding drain semiconductor material, and at least a channel region (4) comprising a corresponding channel semiconductor material, which is arranged between the source region (2) and the drain region(3), the tunnel field-effect transistor (1)further comprising: at least a source-channel gate electrode (5) provided on at least an interface (5') between the source region (2) and the channel region (4); at least an insulator (5") corresponding to the source-channel gate electrode (5) that is provided between the source-channel gate electrode (5) and at least the interface (5') between the source region (2) and the channel region (4), at least a drain-channel gate electrode (6) provided on at least an interface(6') between the drain region (3) and the channel region(4), and at least an insulator(6") corresponding to the drain-channel gate electrode (6) that is provided between the drain-channel gate electrode (6) and at least the interface (6) between the drain region (3) and the channel region(4).
Abstract:
Dans un thyristol d'induction statique une region de porte a maille est formee sur la surface frontale d'une cathode, et une region de haute resistance ayant une densite d'impurete effective de 10-11 cm-3 a 5.1014 cm-3 est interposee entre la region de porte a maille et la region cathodique de telle sorte que le gain de tension determine par la longueur de la porte, l'intervalle de la porte et la distance entre la porte et l'anode est superieure a 10 avec une petite chute de tension directe, une capacite de commutation a haute vitesse et une tension de resistance elevee.