Abstract:
The present subject matter provides a High Electron Mobility Transistor (HEMT) comprising a reduced surface field (RESURF) junction. The HEMT comprises a source electrode at a first end and a drain electrode at a second end. A gate electrode is provided between the source electrode and the drain electrode. A reduced surface field (RESURF) junction extends from the first end to the second end. The gate electrode is provided above the RESURF junction. A buried channel layer is formed in the RESURF junction on application of a positive voltage at the gate electrode. The RESURF junction comprises an n-type Gallium nitride (GaN) layer and a p-type GaN layer. The n-type GaN layer is provided between the p-type GaN layer and the gate electrode.
Abstract:
Es wird ein vertikaler SiC-MOSFET (20) mit einem Sourceanschluss (2), einem Drainanschluss (4) und einem Gatebereich (36) sowie mit einer zwischen dem Sourceanschluss (2) und dem Drainanschluss (4) angeordneten, eine Dotierung einer ersten Art aufweisenden Epitaxieschicht (22), wobei in die Epitaxieschicht (22) eine sich horizontal erstreckende Zwischenschicht (24) eingebettet ist, die Bereiche (40) mit einer von der Dotierung erster Art verschiedenen Dotierung zweiter Art aufweist, bereitgestellt. Der vertikale SiC-MOSFET (20) zeichnet sich dadurch aus, dass zumindest die Bereiche mit Dotierung zweiter Art (40) elektrisch leitend mit dem Sourceanschluss (2) verbunden sind. Der Gatebereich (36) kann in einem Gatetrench (39) angeordnet sein.
Abstract:
A vertical JFET made by a process using a limited number of masks. A first mask is used to form mesas and trenches in active cell and termination regions simultaneously. A maskless self-aligned process is used to form silicide source and gate contacts. A second mask is used to open windows to the contacts. A third mask is used to pattern overlay metallization. An optional fourth mask is used to pattern passivation. The channel is doped via angled implantation, and the width of the trenches and mesas in the active cell region may optionally be varied from those in the termination region.
Abstract:
In described examples, a method (100) of fabricating a gate stack for a power transistor device includes thermally oxidizing (101) a surface of a Group IIIA-N layer on a substrate to form a first dielectric layer of an oxide material that is > 5A thick. A second dielectric layer being silicon nitride or silicon oxynitride is deposited (102) on the first dielectric layer. A metal gate electrode is formed (104) on the second dielectric layer.
Abstract:
A method of fabricating a III-N device includes forming a III-N channel layer on a substrate, a III-N barrier layer on the channel layer, an insulator layer on the barrier layer, and a trench in a first portion of the device. Forming the trench comprises removing the insulator layer and a part of the barrier layer in the first portion of the device, such that a remaining portion of the barrier layer in the first portion of the device has a thickness away from a top surface of the channel layer, the thickness being within a predetermined thickness range, annealing the III-N device in a gas ambient including oxygen at an elevated temperature to oxidize the remaining portion of the barrier layer in the first portion of the device, and removing the oxidized remaining portion of the barrier layer in the first portion of the device.