摘要:
The invention relates to a method for obtain ing a field effect transistor, comprising steps of: - forming (100) a multi-layer graphene stack on a face of a base substrate; - depositing (200) a source and a drain electrode on the multi-layer graphene stack; - forming a conductive multi-layer graphene block by lithography and etch ing process; - fluorinating (600) the graphene block, using the source and d rain electrodes as a fluorination-protective mask, during a predetermined period and at a predetermined temperature, such that an upper part of said graphene block is converted into fluorographene over a given thickness portion, to form a dielectric element with in the graphene block; - depositing (700) a gate electrode on the dielectric element.
摘要:
A method for fabricating a vertical FET structure includes prior to depositing a gate on a first vertical FET on a semiconductor substrate, depositing a first layer on the first vertical FET on the semiconductor substrate. The method further includes prior to depositing a gate on a second vertical FET on the semiconductor substrate, depositing a second layer on the second vertical FET on the semiconductor substrate. The method further includes etching the first layer on the first vertical FET to a lower heightthan the second layer on the second vertical FET. The method further includes depositing a gate material on both the first vertical FET and the second vertical FET. The method further includes etching the gate material on both the first vertical FET andthe second vertical FET to a co-planar height.
摘要:
A monolithically integrated MOS channel in gate-source shorted mode is used as a diode for the third quadrant conduction path for a power MOSFET. The MOS diode and MOSFET can be constructed in a variety of configurations including split-cell and trench. The devices may be formed of silicon carbide, gallium nitride, aluminum nitride, aluminum gallium nitride, diamond, or similar semiconductor. Low storage capacitance and low knee voltage for the MOS diode can be achieved by a variety of means. The MOS diode may be implemented with channel mobility enhancement materials, and/or have a very thin/high permittivity gate dielectric. The MOSFET gate conductor and MOS diode gate conductor may be made of polysilicon doped with opposite dopant types. The surface of the MOS diode dielectric may be implanted with cesium.
摘要:
Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
摘要:
Described is an apparatus forming complementary tunneling field effect transistors (TFETs) using oxide and/or organic semiconductor material. One type of TFET comprises: a substrate; a doped first region, formed above the substrate, having p-type material selected from a group consisting of Group III-V, IV-IV, and IV of a periodic table; a doped second region, formed above the substrate, having transparent oxide n-type semiconductor material; and a gate stack coupled to the doped first and second regions. Another type of TFET comprises: a substrate; a doped first region, formed above the substrate, having p-type organic semiconductor material; a doped second region, formed above the substrate, having n-type oxide semiconductor material; and a gate stack coupled to the doped source and drain regions. In another example, TFET is made using organic only semiconductor materials for active regions.