Abstract:
The present techniques generally relate to fabrication of layered correlated electron materials (CEMs) in which a first group of one or more layers may comprise a first concentrationof a dopant species, and wherein a second group of one or more layers may comprise a second concentration of a dopant species. In other embodiments, a CEM may comprise one or more regions of graded concentration of a dopant species.
Abstract:
A hybrid selector comprises a nonlinear selector and a ohmic resistor coupled in series with the nonlinear selector. The hybrid selector is nonlinear below a threshold voltage. The hybrid selector is linear above the threshold voltage.
Abstract:
L'invention concerne un dispositif (10) comportant une pluralité de couches minces (12, 14, 18) comprenant une couche (14) formée d'un matériau ferroélectrique polarisable selon plusieurs directions de polarisation selon une tension électrique appliquée à ladite couche de matériau ferroélectrique, entourée d'une paire de couches conductrices (12, 18) formant des électrodes. Le dispositif de l'invention comprend une couche intermédiaire (16) entre ladite couche (14) de matériau ferroélectrique et une des couches conductrices (12, 18), ladite couche intermédiaire (16) étant constituée d'un matériau dont des propriétés électroniques sont modifiées selon la direction de polarisation dans ladite couche (14) de matériau ferroélectrique adjacente. Le dispositif de l'invention trouve des applications particulièrement avantageuses comme élément mémoire d'une mémoire non volatile, comme élément d'un circuit logique programmable et comme micro-interrupteur.
Abstract:
Provided are a 3-terminal MIT switch which can easily control a discontinuous MIT jump and does not need a conventional gate insulating layer, a switching system including the 3-terminal MIT switch, and a method of controlling an MIT of the 3-terminal MIT switch. The 3-terminal MIT switch includes a 2-terminal MIT device, which generates discontinuous MIT in a transition voltage, an inlet electrode and an outlet electrode, which are respectively connected to each terminal of the 2-terminal MIT device, and a control electrode, which is connected to the inlet electrode and includes an external terminal separated from an external terminal of the inlet electrode, wherein an MIT of the 2-terminal MIT device is controlled according to a voltage or a current applied to the control electrode. The switching system includes the 3-terminal MIT switch, a voltage source connected to the inlet electrode, and a control source connected to the control electrode.
Abstract:
Provided is a voltage regulation system using an abrupt metal-insulator transition (MIT), which can regulate various zener voltages and can be easily manufactured. The voltage regulation system includes: an input power source: a series resistor connected in series to the input power source; and an MIT insulator connected in series to the series resistor, and undergoing an abrupt MIT such that the range of an output voltage regulated to be kept constant varies according to the resistance of the series resistor.
Abstract:
An abrupt MIT (metal-insulator transition) device with parallel conducting layers is provided. The abrupt MIT device includes a first electrode disposed on a certain region of a substrate, a second electrode disposed so as to be spaced a predetermined distance apart from the first electrode, and at least one conducting layer electrically connecting the first electrode with the second electrode and having a width that allows the entire region of the conducting layer to be transformed into a metal layer due to an MIT. Due to this configuration, deterioration of the conducting layer, which is typically caused by current flowing through the conducting layer, is less likely to occur.
Abstract:
Phase transition is controlled by controlling the fractal dimension of a fractal combination throughout the entire region or locally. In magnetic materials, a ferromagnetic phase transition temperature of magnetic fine particles disposed in a self-similarity-carrying shape is controlled by a fractal dimension. In a half-field electronic system confined in a dendritic fractal, Mott transition is controlled by the fractal dimension of the system. In addition, magnetic impurities are added to a fractal combination to generate quantum chaos stronger than ever, and, through this process, Anderson transition is controlled.