Abstract:
Embodiments of process kits for process chambers and methods for processing a substrate are provided herein. In some embodiments, a process kit includes a non-conductive upper shield having an upper portion to surround a sputtering target and a lower portion extending downward from the upper portion; and a conductive lower shield disposed radially outward of the non-conductive upper shield and having a cylindrical body with an upper portion and a lower portion, a lower wall projecting radially inward from the lower portion, and a lip protruding upward from the lower wall. The cylindrical body is spaced apart from the non-conductive upper shield by a first gap. The lower wall is spaced apart from the lower portion of the non-conductive upper shield by a second gap to limit a direct line of sight between a volume within the non-conductive upper shield and the cylindrical body of the conductive lower shield.
Abstract:
Embodiments of the disclosure relate to deposition of a conformal organic material over a feature formed in a photoresist or a hardmask, to decrease the critical dimensions and line edge roughness. In various embodiments, an ultra-conformal carbon-based material is deposited over features formed in a high-resolution photoresist. The conformal organic layer formed over the photoresist thus reduces both the critical dimensions and the line edge roughness of the features.
Abstract:
An electrostatic chucking apparatus includes a movable member arranged for movement relative to an axial axis, at least one electrostatic chuck coupled to the movable member, and a stationary member. At least one moving insulated electrode is coupled to the movable member, and at least one stationary insulated electrode is coupled to the stationary member in an axial position corresponding to the at least one moving insulated electrode. A slip ring contact couples electrical energy from the at least one stationary insulated electrode to the at least one moving insulated electrode.
Abstract:
A first conductor is formed over a substrate. A first insulator is formed over the first conductor. A second insulator including aluminum oxide is formed over the first insulator. A third insulator is formed in contact with a top surface of the second insulator. A first opening portion reaching the first conductor is provided in the first to third insulators. A second conductor is formed over the third insulator and in the first opening portion. A third conductor is formed in the first opening portion by removing part of the second conductor over the third insulator so that a surface of the third conductor is parallel to a bottom surface of the substrate. A first transistor including an oxide semiconductor is formed over the third insulator.
Abstract:
A method for fabricating silicon nanowires. The method includes the steps of: depositing a silicon nitride layer on a silicon on insulator (SOI) starting wafer; patterning the silicon nitride to define at least one silicon microbar; etching the SOI starting wafer to expose the at least one silicon microbar, wherein the at least one microbar is surrounded by a raised perimeter; growing a silicon oxide layer on the raised perimeter of the at least one microbar; and etching a portion of the at least one silicon microbar to produce at least one silicon nanowire adjacent the silicon oxide layer.
Abstract:
A method of forming a graphite-based structure on a substrate comprises patterning the substrate thereby forming a plurality of elements on the substrate. Each respective element in the plurality of elements is separated from an adjacent element on the substrate by a corresponding trench in a plurality of trenches on the substrate and each respective element in the plurality of elements has a corresponding top surface. The method further comprises segmentedly depositing a graphene initiating layer onto the top surface of each respective element in the plurality of elements; and generating graphene using the graphene initiating layer thereby forming the graphite -based structure.