Abstract:
Systems, electronic devices, and methods are directed to a self-adjustable heat spreader. A spring system may include one or more spring members and a contact surface adapted to contact a circuit board component. Each spring member may include a thermally conductive material. A thermal spreader plate may be coupled to the one or more spring members. The spring system and the thermal spreader plate may be configured to allow movement, with respect to the thermal spreader plate along multiple axes, of one or more portions of the one or more spring members proximate to the thermal spreader plate when the contact surface is pressed against the circuit board component and the spring system transitions from a first state to a compressed state. The contact surface and the spring system may be configured to transfer heat between the circuit board component and the thermal spreader plate.
Abstract:
A flexible thermal conduit runs from a first housing portion of an electronic device to a second housing portion of the electronic device, to convey heat generated by an electronic component located in the first housing portion to a heat dissipation structure located in the second housing portion, where the second housing portion is flexibly coupled to the first housing portion, for example, by a hinge or other type of joint. The flexible conduit may include a plurality of layers of thin, flat thermally conductive material, which may be arranged to flex independently of each other in the region where the first and second housing portions are coupled.
Abstract:
A flexible thermal conduit runs from a first housing portion of an electronic device to a second housing portion of the electronic device, to convey heat generated by an electronic component located in the first housing portion to a heat dissipation structure located in the second housing portion, where the second housing portion is flexibly coupled to the first housing portion, for example, by a hinge or other type of joint. The flexible conduit may include a plurality of layers of thin, flat thermally conductive material, which may be arranged to flex independently of each other in the region where the first and second housing portions are coupled.
Abstract:
A circuit design scheme routes wires based on temperature. In particular, temperature conditions along a prospective route are taken into account when determining whether to use that route for a wire. For example, a route can be selected from among a set of prospective routes based on which route is associated with the "smoothest" temperature gradient. Here, preference may be given to the route or routes having the smallest amount of temperature variation along the route.
Abstract:
Le circuit imprimé flexible à faible émissivité comprend des premier et second extrémités (48a, 48b), et une partie centrale flexible (50) s'étendant entre les première et seconde extrémités et comportant des pistes électriquement conductrices (52), enrobées dans un matériau polymère, pour relier électriquement les première et seconde extrémités. La partie centrale flexible est couverte au moins en partie par un écran thermique (54) formé dans un matériau ayant une émissivité inférieure à celles du matériau polymère et des pistes électriquement conductrices.
Abstract:
The invention relates to an electronic sub-assembly comprising a carrier layer and a component region with at least one electronic component, the carrier layer having, at least in sections, a material with a low coefficient of thermal expansion to adapt the coefficient of thermal expansion of the carrier layer, and the carrier layer, in addition to the component region, having at least one compensation layer on which an electrically insulating, thermally conducting layer and at least one electrically conductive layer are provided.
Abstract:
In some embodiments, a system includes a conductor on a first layer of a laminated composite assembly. The laminated composite assembly has an input, an output, a first electrical interconnect which couples the conductor on the first layer of the laminated composite assembly with a second conductor on a second layer of the laminated composite assembly, and a second electrical interconnect which electrically couples the first conductor with the second conductor. A width of the second electrical interconnect is greater than a width of the first electrical interconnect. A resistance of the laminated composite assembly as measured between the electrical input and the electrical output is less than the resistance of the laminated composite assembly as measured between the electrical input and the electrical output if the width of the first electrical interconnect were substantially equal to the width of the second electrical interconnect.