Abstract:
L'invention porte sur un composant quantique comprenant : • un substrat (6), • deux électrodes de suspension (4), • plusieurs électrodes de grille (1, 2, 3) disposée entre les deux électrodes de suspension, les deux électrodes de suspension étant surélevées par rapport à Taux électrodes de grille, • au moins un élément nano-objet (8), particulièrement un nanofil ou un nanotube, suspendu entre les deux électrodes de suspension, l'a u moins un élément nano-objet étant disposé au-dessus des électrodes de grille, les électrodes du composant quantique comprenant: • plusieurs électrodes de grille basse fréquence (1, 2) prévues pour définir des potentiels électrostatiques dans l'élément nano-objet permettant la formation d'au moins deux boîtes quantiques dans l'élément nano-objet, • au moins une électrode de grille micro-onde (3), • dans lequel la distance, dite distance micro-onde, séparant dans la direction verticale l'au moins une électrode de grille micro-onde (3) de l'au moins un élément nano-objet (8) est différente de la distance, dite distance basse fréquence, séparant dans la direction verticale l'au moins une électrode de grille basse fréquence (1, 2) de l'au moins un élément nano-objet (8).
Abstract:
In accordance with an example embodiment, there is provided a system comprising at least one quasiparticle spin qubit, comprising at least one superconducting island (S), at least one insulating layer (I) and at least one normal conductor (N) arranged in an array such that at least one of the at least one superconducting island (S) is connected to at least one of the at least one normal conductor (N) through at least one of the at least one insulating layer (I), wherein the at least one quasiparticle is arranged to occupy the at least one superconducting island (S), wherein the at least one normal conductor (N) is controlled with at least one voltage source (V1, V2), and wherein each of the at least one superconducting island is controlled by a gate voltage (Vg1, Vg2, Vg3).
Abstract:
This disclosure describes the structure of a transistor that provides improved performance by reducing the off-state capacitance between the source and the drain by using a cap layer to extend the electrical distance between the gate and the source and drain contacts. In certain embodiments, a dielectric layer may be disposed between the gate electrode and the cap layer and vias are created in the dielectric layer to allow the gate electrode to contact the cap layer at select locations. In some embodiments, the gate electrode is offset from the cap layer to allow a more narrow cap layer and to allow additional space between the gate electrode and the drain contact facilitating the inclusion of a field plate. The gate electrode may be configured to only contact a portion of the cap layer.
Abstract:
Die Erfindung betrifft ein elektronisches Bauelement (10), welches von einem Halbleiterbauelement oder einer halbleiterähnlichen Struktur mit Gatterelektrodenanordnungen (16, 18, 20) zum Bewegen eines Quantenpunkts (52) gebildet wird. Das elektronische Bauelement (10) enthält ein Substrat (12) mit einem zweidimensionalen Elektronengas oder Elektronenlochgas. Elektrische Kontakte verbinden die Gatterelektrodenanordnungen (16, 18, 20) mit Spannungsquellen. Eine erste Gatterelektrodenanordnung (16) mit Gatterelektroden (22, 24) ist an einer Fläche (14) des elektronischen Bauelements zur Erzeugung einer Potentialmulde (50) in dem Substrat (12) angeordnet. Die Gatterelektrodenanordnung (16) weist parallel verlaufende Elektrodenfinger (32, 34) auf, wobei die Elektrodenfinger (32, 34) periodisch alternierend zusammengeschaltet sind, welche eine nahezu kontinuierliche Bewegung der Potentialmulde (50) durch das Substrat (12) bewirken, wobei ein Quantenpunkt (52) mit dieser Potentialmulde (50) in eine Richtung translatiert wird.
Abstract:
An embodiment may include a microelectronic device. The microelectronic device may include a first pair of transistors stacked vertically and connected in series. Each of the first pair of transistors are of the same type. The microelectronic device may include a second pair of transistors connected in parallel. The second pair of transistors being a different type 5than the first pair of transistors. The first pair of transistors and the second pair of transistors are arranged substantially perpendicular to the plurality of layers.
Abstract:
Devices, materials and methods for producing and integrating carbon nanotubes (CNT) into TFTs to form unipolar CNT TFTs are provided. CNT TFTs comprise doped layers between the CNT active layer and the source/drain electrodes capable of providing a carrier-trapping function such that unwanted carrier charge injection is suppressed between the electrodes allowing for the unipolar operation of CNT TFTs. Methods and apparatus for forming unipolar N- or P- type SWCNT TFTs are also provided.
Abstract:
A memory device includes a metal oxide material disposed between and in electrical contact with first and second conductive electrodes, and an electrical current source configured to apply one or more electrical current pulses through the metal oxide material. For each of the one or more electrical current pulses, an amplitude of the electrical current increases over time during the electrical current pulse to form a conductive filament in metal oxide material.