Abstract:
L'invention se rapporte à une pièce de micromécanique composite (41, 41') comportant une partie horizontale (21) en silicium qui comprend un ajourage (25) recevant une partie métallique (43, 43') caractérisée en ce que la partie (21) en silicium est formée par du silicium dopé et comporte au moins une partie verticale destinée à transmettre une force mécanique à un élément n'appartenant pas à ladite pièce, ladite partie verticale est revêtue (51, 52) par du dioxyde de silicium selon une épaisseur supérieure à un oxyde natif afin d'améliorer les qualités tribologiques dudit silicium. L'invention concerne le domaine des pièces de micromécanique notamment pour des mouvements horlogers.
Abstract:
L'invention se rapporte à un procédé de fabrication (1) d'une pièce de micromécanique composite (41, 41') comportant les étapes suivantes : a) se munir (10) d'un substrat (9, 9') comportant une couche supérieure (21) et une couche inférieure (23) en matériau micro-usinable électriquement conductrices et solidarisées entre elles par une couche intermédiaire (22) électriquement isolante ; b) graver selon au moins un motif (26) dans la couche supérieure (21) jusqu'à la couche intermédiaire (22) afin de former au moins une cavité (25) dans le substrat (9, 9') ; c) recouvrir (16) la partie supérieure dudit substrat d'un revêtement (30) électriquement isolant ; d) graver (18) de manière directionnelle ledit revêtement et ladite couche intermédiaire afin de limiter leur présence uniquement au niveau de chaque paroi verticale (51, 52) formée dans ladite couche supérieure ; e) réaliser (5) une électrodéposition en connectant l'électrode à la couche conductrice inférieure (23) du substrat (9, 9') afin de former au moins une partie métallique (33, 43, 43') de ladite pièce ; f) libérer la pièce composite (41, 41') du substrat (9, 9'). L'invention concerne le domaine des pièces de micromécanique notamment pour des mouvements horlogers.
Abstract:
A method of manufacturing a micro electro mechanical system (MEMS) device, comprising the steps of: providing a substrate, depositing an active layer, depositing a sacrificial layer, forming a MEMS structure in the active layer, wherein forming the MEMS structure comprises depositing a capping layer over the sacrificial layer, etching holes into the capping layer, removing the sacrificial layer with a dry etching process.
Abstract:
A micromechanical structure and a method of fabricating a micromechanical structure are provided. The micromechanical structure comprises a silicon (Si) based substrate; a micromechanical element formed directly on the substrate; and an undercut formed underneath a released portion of the micromechanical element; wherein the undercut is in the form of a recess formed in the Si based substrate.
Abstract:
The invention is directed to a patterned aerogel-based layer that serves as a mold for at least part of a microelectromechanical feature. The density of an aerogel is less than that of typical materials used in MEMS fabrication, such as poly-silicon, silicon oxide, single-crystal silicon, metals, metal alloys, and the like. Therefore, one may form structural features in an aerogel-based layer at rates significantly higher than the rates at which structural features can be formed in denser materials. The invention further includes a method of patterning an aerogel-based layer to produce such an aerogel-based mold. The invention further includes a method of fabricating a microelectromechanical feature using an aerogel-based mold. This method includes depositing a dense material layer directly onto the outline of at least part of a microelectromechanical feature that has been formed in the aerogel-based layer.
Abstract:
A method of manufacturing an external force detection sensor in which a sensor element is formed by through-hole (20) dry etching of an element substrate (3), and an electrically conductive material is used as an etching stop layer (18) during the dry etching.
Abstract:
Methods of fabricating comb drive devices utilizing one or more sacrificial etch-buffers are disclosed. An illustrative fabrication method may include the steps of etching a pattern onto a wafer substrate defining one or more comb drive elements and sacrificial etch-buffers, liberating and removing one or more sacrificial etch-buffers prior to wafer bonding, bonding the etched wafer substrate to an underlying support substrate, and etching away the wafer substrate. In some embodiments, the sacrificial etch-buffers are removed after bonding the wafer to the support substrate. The sacrificial etch-buffers can be provided at one or more selective regions to provide greater uniformity in etch rate during etching. A comb drive device in accordance with an illustrative embodiment can include a number of interdigitated comb fingers each having a more uniform profile along their length and/or at their ends, producing less harmonic distortion during operation.
Abstract:
A silicon-on-insulator (SOI) substrate including laminated layers of a substrate, an oxide layer, and a silicon layer in order. The oxide layer has an electrifying hole fluidly connected with the substrate and the electrifying hole is filled with a part of the silicon layer. A method for fabricating the floating structure is also disclosed which includes the steps of forming an oxide layer having a predetermined thickness on a substrate, forming one or more electrifying holes in an area of the oxide layer corresponding to an inner part of the floating structure, forming a silicon layer on the oxide layer including an electrification structure electrically connecting the silicon layer to the substrate, forming a pattern for the floating structure on the silicon layer, removing the oxide layer corresponding to an inner area of the pattern, forming a thermal oxide layer on a surface of the silicon layer, and removing the thermal oxide layer to form the floating structure.