Abstract:
A bonded structure, comprising a first component including a first substrate having a first dielectric surface and a first conductive feature at the first dielectric surface; and a second component including a second substrate having a second dielectric surface and a second conductive feature at the second dielectric surface. The first dielectric surface is directly bonded to the second dielectric surface without an underfill. The first conductive feature is bonded to second conductive feature by way of a conductive bond region between the first and second conductive features, wherein the bond region comprises structural evidence of conductive nanoparticles employed in bonding the first conductive feature to the second conductive feature.
Abstract:
The problem of the invention is to provide a resin composite electrolytic copper foil having further improved heat resistance and improved plate adhesion strength when plated after desmear treatment in the work process of an additive method. The solution is to form a roughened surface having a plurality of minute projections, a surface roughness (Rz) within a range of 1.0 µm to 3.0 µm and a lightness value of not more than 30 on one surface of an electrolytic copper foil (A), and form a layer of a resin composition (B) containing a block copolymerized polyimide resin (a) having a structure that imide oligomers of a first structural unit and a second structural unit are bonded alternately and repeatedly on the roughened surface.
Abstract:
Electroplating methods enable the plating of photoresist defined features which have substantially uniform morphology. The electroplating methods include copper electroplating baths with reaction products of pyrazole compounds and bisepoxides to electroplate the photoresist defined features. Such features include pillars, bond pads and line space features.
Abstract:
There is provided a method for subjecting garment accessories to a surface electrolytic treatment, which can advantageously provide various metallic colors to metallic garment accessories in a cost effective manner. The method can provide a first metallic color on one side of outer surface of the garment accessory while at the same time providing a second metallic color on the other side of the outer surface, by placing one or more metallic garment accessories in an electrolytic solution in a non-contact state with an anode and a cathode for passing electric current through the electrolytic solution, passing electric current through the electrolytic solution and generating a bipolar phenomenon on the garment accessory. The method may further comprise the step of controlling the posture of the garment accessory such that the one side of the outer surface of the garment accessory faces the anode and the other side faces the cathode during passing electric current through the electrolytic solution. The method may further comprise the step of polishing at least a part of the outer surface of the garment accessory during passing electric current through the electrolytic solution.
Abstract:
Articles prepared by additive manufacturing of preforms that are coated by electrodeposition of nanolaminate materials, and methods of their production are described.
Abstract:
There is provided a method for subjecting garment accessories to a surface electrolytic treatment, which can advantageously provide various metallic colors to metallic garment accessories in a cost effective manner. The method can provide a first metallic color on one side of outer surface of the garment accessory while at the same time providing a second metallic color on the other side of the outer surface, by placing one or more metallic garment accessories in an electrolytic solution in a non-contact state with an anode and a cathode for passing electric current through the electrolytic solution, passing electric current through the electrolytic solution and generating a bipolar phenomenon on the garment accessory. The method may further comprise the step of controlling the posture of the garment accessory such that the one side of the outer surface of the garment accessory faces the anode and the other side faces the cathode during passing electric current through the electrolytic solution. The method may further comprise the step of polishing at least a part of the outer surface of the garment accessory during passing electric current through the electrolytic solution.
Abstract:
In certain embodiments, a method comprises placing nonconductive fibers (210) adjacent to a conductive material (220), immersing the nonconductive fibers (210) and the conductive material (220) in a plating medium (260), and applying a voltage to the conductive material (220) to initiate electroplating. The method further comprises engulfing, by electroplating, the nonconductive fibers (210) in metal to create a metal matrix composite (270).
Abstract:
Copper electroplating baths and methods enable the plating of photoresist defined megafeatures at high current densities which have substantially uniform morphology and reduced nodule development. The copper electroplating baths include a mixture of heterocyclic nitrogen containing copolymers which provide megafeatures having a good %TIR and %WID balance.